Athanassia Athanassiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5522241/publications.pdf Version: 2024-02-01

		28274	46799
341	12,723	55	89
papers	citations	h-index	g-index
351	351	351	15713
all docs	docs citations	times ranked	citing authors
	uoes citations	times failked	citing autions

#	Article	IF	CITATIONS
1	Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS Nano, 2012, 6, 5413-5419.	14.6	574
2	Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Scientific Reports, 2017, 7, 41292.	3.3	305
3	Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science, 2014, 5, 305.	3.6	251
4	Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology, 2006, 17, 3234-3238.	2.6	242
5	All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. International Journal of Pharmaceutics, 2014, 463, 137-145.	5.2	241
6	Magnetite (Fe3O4)-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	214
7	Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano, 2018, 12, 7690-7700.	14.6	208
8	Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Applied Sciences (Switzerland), 2018, 8, 1438.	2.5	201
9	Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering. PLoS ONE, 2014, 9, e85835.	2.5	186
10	A simple approach to covalent functionalization of boron nitride nanotubes. Journal of Colloid and Interface Science, 2012, 374, 308-314.	9.4	176
11	Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. Journal of Materials Chemistry B, 2016, 4, 1686-1695.	5.8	162
12	Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials Chemistry B, 2015, 3, 1583-1589.	5.8	141
13	Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Frontiers in Bioengineering and Biotechnology, 2018, 6, 137.	4.1	137
14	Direct Transformation of Edible Vegetable Waste into Bioplastics. Macromolecules, 2014, 47, 5135-5143.	4.8	126
15	Reversibly Lightâ€Switchable Wettability of Hybrid Organic/Inorganic Surfaces With Dual Microâ€∕Nanoscale Roughness. Advanced Functional Materials, 2009, 19, 1149-1157.	14.9	115
16	A biocompatible sodium alginate/povidone iodine film enhances wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 17-24.	4.3	110
17	Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths. ACS Applied Materials & Interfaces, 2018, 10, 2907-2917.	8.0	107
18	Strain-responsive mercerized conductive cotton fabrics based on PEDOT:PSS/graphene. Materials and Design, 2017, 135, 213-222.	7.0	106

#	Article	IF	CITATIONS
19	Photocontrolled Variations in the Wetting Capability of Photochromic Polymers Enhanced by Surface Nanostructuring. Langmuir, 2006, 22, 2329-2333.	3.5	103
20	Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Applied Materials & amp; Interfaces, 2011, 3, 4024-4031.	8.0	103
21	Robust and Biodegradable Elastomers Based on Corn Starch and Polydimethylsiloxane (PDMS). ACS Applied Materials & Interfaces, 2015, 7, 3742-3753.	8.0	101
22	Carbon Nanofiber versus Grapheneâ€Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin. Advanced Science, 2018, 5, 1700587.	11.2	100
23	Bioplastics from vegetable waste <i>via</i> an eco-friendly water-based process. Green Chemistry, 2018, 20, 894-902.	9.0	99
24	Reversible Wettability Changes in Colloidal TiO ₂ Nanorod Thin-Film Coatings under Selective UV Laser Irradiation. Journal of Physical Chemistry C, 2008, 112, 701-714.	3.1	96
25	Controlled antiseptic release by alginate polymer films and beads. Carbohydrate Polymers, 2013, 92, 176-183.	10.2	95
26	Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. European Journal of Pharmaceutical Sciences, 2017, 104, 133-144.	4.0	95
27	Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion. Pharmaceutical Research, 2013, 30, 2133-2145.	3.5	90
28	Dynamical Formation of Spatially Localized Arrays of Aligned Nanowires in Plastic Films with Magnetic Anisotropy. ACS Nano, 2010, 4, 1873-1878.	14.6	87
29	All-Optical Reversible Actuation of Photochromic-Polymer Microsystems. Advanced Materials, 2005, 17, 988-992.	21.0	85
30	Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art. Advances in Colloid and Interface Science, 2019, 270, 216-250.	14.7	84
31	Solvent resistant superhydrophobic films from self-emulsifying carnauba wax–alcohol emulsions. Soft Matter, 2011, 7, 7939.	2.7	81
32	Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chemical Engineering Journal, 2017, 319, 321-332.	12.7	81
33	Healable Cotton–Graphene Nanocomposite Conductor for Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 13825-13830.	8.0	81
34	Cocoa Shell Waste Biofilaments for 3D Printing Applications. Macromolecular Materials and Engineering, 2017, 302, 1700219.	3.6	81
35	Surface modification of polymeric foams for oil spills remediation. Journal of Environmental Management, 2018, 206, 872-889.	7.8	77
36	Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol–cellulose composites. Chemical Engineering Journal, 2015, 277, 242-251.	12.7	76

#	Article	IF	CITATIONS
37	Starch-based bio-elastomers functionalized with red beetroot natural antioxidant. Food Chemistry, 2017, 216, 324-333.	8.2	76
38	Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer, 2019, 175, 137-145.	3.8	75
39	Photoswitchable Organic Nanofibers. Advanced Materials, 2008, 20, 314-318.	21.0	74
40	Green Biocomposites for Thermoelectric Wearable Applications. Advanced Functional Materials, 2020, 30, 1907301.	14.9	74
41	Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomaterialia, 2018, 73, 365-376.	8.3	73
42	Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chemical Engineering Journal, 2021, 409, 128144.	12.7	73
43	Biobased, Biodegradable, Self-Healing Boronic Ester Vitrimers from Epoxidized Soybean Oil Acrylate. ACS Applied Polymer Materials, 2021, 3, 1135-1144.	4.4	73
44	Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Applied Materials & Interfaces, 2022, 14, 14654-14667.	8.0	73
45	Fabrication of Visible Light-Induced Antibacterial and Self-Cleaning Cotton Fabrics Using Manganese Doped TiO ₂ Nanoparticles. ACS Applied Bio Materials, 2018, 1, 1154-1164.	4.6	72
46	Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Applied Materials & Interfaces, 2019, 11, 31317-31327.	8.0	71
47	Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water. ACS Applied Materials & Interfaces, 2015, 7, 14778-14784.	8.0	69
48	Cutin from agro-waste as a raw material for the production of bioplastics. Journal of Experimental Botany, 2017, 68, 5401-5410.	4.8	69
49	Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance. Journal of Colloid and Interface Science, 2018, 519, 285-295.	9.4	68
50	Acidochromic fibrous polymer composites for rapid gas detection. Journal of Materials Chemistry A, 2017, 5, 339-348.	10.3	66
51	Effect of the porous structure of polymer foams on the remediation of oil spills. Journal Physics D: Applied Physics, 2016, 49, 145601.	2.8	63
52	Hydrophobic treatment of woven cotton fabrics with polyurethane modified aminosilicone emulsions. Applied Surface Science, 2019, 490, 331-342.	6.1	63
53	Transparent and flexible amorphous cellulose-acrylic hybrids. Chemical Engineering Journal, 2016, 287, 196-204.	12.7	62
54	Green Processing Route for Polylactic Acid–Cellulose Fiber Biocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4128-4136.	6.7	61

#	Article	IF	CITATIONS
55	Design and Characterization of a Nanocomposite Pressure Sensor Implemented in a Tactile Robotic System. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2967-2975.	4.7	59
56	Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydrate Polymers, 2018, 192, 150-158.	10.2	56
57	Thermoplastic cellulose acetate oleate films with high barrier properties and ductile behaviour. Chemical Engineering Journal, 2018, 348, 840-849.	12.7	55
58	Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplateletâ€Bioâ€Based Composites. Advanced Electronic Materials, 2015, 1, 1500224.	5.1	54
59	Superhydrophobic high impact polystyrene (HIPS) nanocomposites with wear abrasion resistance. Chemical Engineering Journal, 2017, 322, 10-21.	12.7	53
60	Graphene and polytetrafluoroethylene synergistically improve the tribological properties and adhesion of nylon 66 coatings. Carbon, 2017, 123, 26-33.	10.3	53
61	Spatially Controlled Surface Energy Traps on Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 1036-1043.	8.0	52
62	Nylon 6,6/graphene nanoplatelet composite films obtained from a new solvent. RSC Advances, 2016, 6, 6823-6831.	3.6	52
63	A highly porous solvent free PVDF/expanded graphite foam for oil/water separation. Chemical Engineering Journal, 2019, 372, 1174-1182.	12.7	52
64	Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes. Advanced Functional Materials, 2022, 32, .	14.9	52
65	Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy, 2018, 7, 105-112.	4.7	51
66	Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. International Journal of Biological Macromolecules, 2022, 209, 1985-1994.	7.5	51
67	Spent Coffee Bioelastomeric Composite Foams for the Removal of Pb ²⁺ and Hg ²⁺ from Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 5495-5502.	6.7	50
68	Allâ€Natural Sustainable Packaging Materials Inspired by Plant Cuticles. Advanced Sustainable Systems, 2017, 1, 1600024.	5.3	50
69	Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity. European Journal of Pharmaceutical Sciences, 2017, 99, 105-112.	4.0	50
70	Sustainable Fabrication of Plant Cuticle-Like Packaging Films from Tomato Pomace Agro-Waste, Beeswax, and Alginate. ACS Sustainable Chemistry and Engineering, 2018, 6, 14955-14966.	6.7	50
71	Polyvinylpyrrolidone/hyaluronic acid-based bilayer constructs for sequential delivery of cutaneous antiseptic and antibiotic. Chemical Engineering Journal, 2019, 358, 912-923.	12.7	50
72	Bioresin-based superhydrophobic coatings with reduced bacterial adhesion. Journal of Colloid and Interface Science, 2020, 574, 20-32.	9.4	50

#	Article	IF	CITATIONS
73	Porous pH natural indicators for acidic and basic vapor sensing. Chemical Engineering Journal, 2021, 403, 126373.	12.7	49
74	In Situ Formation and Size Control of Gold Nanoparticles into Chitosan for Nanocomposite Surfaces with Tailored Wettability. Langmuir, 2012, 28, 3911-3917.	3.5	48
75	Folate-grafted boron nitride nanotubes: Possible exploitation in cancer therapy. International Journal of Pharmaceutics, 2015, 481, 56-63.	5.2	48
76	Alginate Nanofibrous Mats with Adjustable Degradation Rate for Regenerative Medicine. Biomacromolecules, 2015, 16, 936-943.	5.4	48
77	A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil. Colloids and Surfaces B: Biointerfaces, 2017, 152, 385-392.	5.0	48
78	Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity. Physical Chemistry Chemical Physics, 2009, 11, 3692.	2.8	47
79	Graphene heaters absorb faster. Nature Nanotechnology, 2017, 12, 406-407.	31.5	47
80	Expanded Graphite-Polyurethane Foams for Water–Oil Filtration. ACS Applied Materials & Interfaces, 2019, 11, 30207-30217.	8.0	47
81	Fine-Tuning of Physicochemical Properties and Growth Dynamics of Mycelium-Based Materials. ACS Applied Bio Materials, 2020, 3, 1044-1051.	4.6	47
82	Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals, 2016, 9, 42.	3.8	46
83	Super Tough Polylactic Acid Plasticized with Epoxidized Soybean Oil Methyl Ester for Flexible Food Packaging. ACS Applied Polymer Materials, 2021, 3, 5087-5095.	4.4	46
84	Polymeric Hydrogels—A Promising Platform in Enhancing Water Security for a Sustainable Future. Advanced Materials Interfaces, 2021, 8, 2100580.	3.7	46
85	Multifunctional Bioplastics Inspired by Wood Composition: Effect of Hydrolyzed Lignin Addition to Xylan–Cellulose Matrices. Biomacromolecules, 2020, 21, 910-920.	5.4	45
86	Electrically conductive and high temperature resistant superhydrophobic composite films from colloidal graphite. Journal of Materials Chemistry, 2012, 22, 2057-2062.	6.7	44
87	Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing. Journal of Materials Chemistry A, 2015, 3, 22441-22447.	10.3	44
88	Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymers. Carbon, 2016, 109, 331-339.	10.3	44
89	Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites. ACS Applied Polymer Materials, 2021, 3, 3071-3081.	4.4	44
90	Functionalized Cellulose Networks for Efficient Oil Removal from Oil–Water Emulsions. Polymers, 2016, 8, 52.	4.5	43

#	Article	IF	CITATIONS
91	Light Responsive Silk Nanofibers: An Optochemical Platform for Environmental Applications. ACS Applied Materials & Interfaces, 2017, 9, 40707-40715.	8.0	43
92	Advanced mycelium materials as potential self-growing biomedical scaffolds. Scientific Reports, 2021, 11, 12630.	3.3	43
93	All natural cellulose acetate—Lemongrass essential oil antimicrobial nanocapsules. International Journal of Pharmaceutics, 2016, 510, 508-515.	5.2	42
94	Valorization of Tomato Processing by-Products: Fatty Acid Extraction and Production of Bio-Based Materials. Materials, 2018, 11, 2211.	2.9	42
95	Transparent Bioplastic Derived from CO ₂ -Based Polymer Functionalized with Oregano Waste Extract toward Active Food Packaging. ACS Applied Materials & Interfaces, 2020, 12, 46667-46677.	8.0	42
96	Photochromic Paper Indicators for Acidic Food Spoilage Detection. ACS Omega, 2018, 3, 13484-13493.	3.5	41
97	Photochemical effects in the UV laser ablation of polymers: Implications for laser restoration of painted artworks. Applied Physics A: Materials Science and Processing, 1999, 69, 363-367.	2.3	40
98	Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds. Journal of the Royal Society Interface, 2012, 9, 3017-3026.	3.4	40
99	Superhydrophobic Coatings from Beeswaxâ€inâ€Water Emulsions with Latent Heat Storage Capability. Advanced Materials Interfaces, 2019, 6, 1801782.	3.7	40
100	Superparamagnetic cellulose fiber networks via nanocomposite functionalization. Journal of Materials Chemistry, 2012, 22, 1662-1666.	6.7	39
101	Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process. ACS Applied Materials & Interfaces, 2015, 7, 19112-19118.	8.0	39
102	Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 2015, 12, 525-545.	5.0	39
103	Cellulosic Graphene Biocomposites for Versatile Highâ€Performance Flexible Electronic Applications. Advanced Electronic Materials, 2016, 2, 1600245.	5.1	39
104	Biomimetic keratin gold nanoparticle-mediated <i>in vitro</i> photothermal therapy on glioblastoma multiforme. Nanomedicine, 2021, 16, 121-138.	3.3	39
105	Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS Applied Materials & Interfaces, 2021, 13, 38688-38699.	8.0	39
106	Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid. Physical Chemistry Chemical Physics, 2012, 14, 15406.	2.8	38
107	Modification of wetting properties of laser-textured surfaces by depositing triboelectrically charged Teflon particles. Colloid and Polymer Science, 2013, 291, 367-373.	2.1	37
108	Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation. Scientific Reports, 2016, 6, 33295.	3.3	37

#	Article	IF	CITATIONS
109	Titanate Fibroin Nanocomposites: A Novel Approach for the Removal of Heavy-Metal Ions from water. ACS Applied Materials & Interfaces, 2018, 10, 651-659.	8.0	37
110	Combining dietary phenolic antioxidants with polyvinylpyrrolidone: transparent biopolymer films based on <i>p</i> -coumaric acid for controlled release. Journal of Materials Chemistry B, 2019, 7, 1384-1396.	5.8	37
111	From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. Materials Science and Engineering C, 2020, 116, 111151.	7.3	37
112	3D Photothermal Cryogels for Solar-Driven Desalination. ACS Applied Materials & amp; Interfaces, 2021, 13, 30542-30555.	8.0	37
113	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	4.6	36
114	Biodegradable and Insoluble Cellulose Photonic Crystals and Metasurfaces. ACS Nano, 2020, 14, 9502-9511.	14.6	36
115	Light-Controlled Directional Liquid Drop Movement on TiO ₂ Nanorods-Based Nanocomposite Photopatterns. Langmuir, 2010, 26, 18557-18563.	3.5	35
116	Antibacterial Melamine Foams Decorated with <i>in Situ</i> Synthesized Silver Nanoparticles. ACS Applied Materials & amp; Interfaces, 2018, 10, 16095-16104.	8.0	35
117	A second life for fruit and vegetable waste: a review on bioplastic films and coatings for potential food protection applications. Green Chemistry, 2022, 24, 4703-4727.	9.0	35
118	Patterned structures ofin situsize controlled CdS nanocrystals in a polymer matrix under UV irradiation. Nanotechnology, 2009, 20, 155302.	2.6	34
119	Low-Cost and Effective Fabrication of Biocompatible Nanofibers from Silk and Cellulose-Rich Materials. ACS Biomaterials Science and Engineering, 2016, 2, 526-534.	5.2	34
120	Self-Cleaning Organic/Inorganic Photo-Sensors. ACS Applied Materials & Interfaces, 2013, 5, 7139-7145.	8.0	33
121	Polymeric Films with Electric and Magnetic Anisotropy Due to Magnetically Assembled Functional Nanofibers. ACS Applied Materials & amp; Interfaces, 2014, 6, 4535-4541.	8.0	33
122	Cellulose-polyhydroxylated fatty acid ester-based bioplastics with tuning properties: Acylation via a mixed anhydride system. Carbohydrate Polymers, 2017, 173, 312-320.	10.2	33
123	Solar-Driven Freshwater Generation from Seawater and Atmospheric Moisture Enabled by a Hydrophilic Photothermal Foam. ACS Applied Materials & Interfaces, 2020, 12, 10307-10316.	8.0	33
124	PET nanoplastics interactions with water contaminants and their impact on human cells. Environmental Pollution, 2021, 271, 116262.	7.5	33
125	Biomimetic Approach for Liquid Encapsulation with Nanofibrillar Cloaks. Langmuir, 2014, 30, 2896-2902.	3.5	32
126	Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles. Applied Physics Letters, 2017, 110, .	3.3	32

#	Article	IF	CITATIONS
127	Antibacterial bioelastomers with sustained povidone-iodine release. Chemical Engineering Journal, 2018, 347, 19-26.	12.7	32
128	"Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles― Scientific Reports, 2011, 1, 202.	3.3	31
129	Bio/non-bio interfaces: A straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Colloids and Surfaces B: Biointerfaces, 2013, 105, 144-151.	5.0	31
130	Plant cuticle under global change: Biophysical implications. Global Change Biology, 2018, 24, 2749-2751.	9.5	31
131	Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics, 2021, 13, 999.	4.5	31
132	Thermal and mechanical characterization of poly(methyl methacrylate) nanocomposites filled with TiO2 nanorods. Composites Part B: Engineering, 2012, 43, 3114-3119.	12.0	30
133	PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 151-161.	2.7	30
134	Transparent and Robust All-Cellulose Nanocomposite Packaging Materials Prepared in a Mixture of Trifluoroacetic Acid and Trifluoroacetic Anhydride. Nanomaterials, 2019, 9, 368.	4.1	30
135	Graphene morphology effect on the gas barrier, mechanical and thermal properties of thermoplastic polyurethane. Composites Science and Technology, 2020, 200, 108461.	7.8	30
136	The effects of UV laser light radiation on artists' pigments. Journal of Cultural Heritage, 2000, 1, S209-S213.	3.3	29
137	Nanochains Formation of Superparamagnetic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 7249-7254.	3.1	29
138	Effect of solvents on the dynamic viscoelastic behavior of poly(methyl methacrylate) film prepared by solvent casting. Journal of Materials Science, 2011, 46, 5044-5049.	3.7	29
139	Control of the water adhesion on hydrophobic micropillars by spray coating technique. Colloid and Polymer Science, 2013, 291, 401-407.	2.1	29
140	Nanoporous PMMA foams with templated pore size obtained by localized in situ synthesis of nanoparticles and CO2 foaming. Polymer, 2017, 124, 176-185.	3.8	29
141	Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices. Applied Physics Letters, 2007, 91, 153108.	3.3	28
142	Reversibly Photo-Responsive Polymer Surfaces for Controlled Wettability. Journal of Adhesion Science and Technology, 2008, 22, 1853-1868.	2.6	28
143	Zwitterionic Nanofibers of Super-Glue for Transparent and Biocompatible Multi-Purpose Coatings. Scientific Reports, 2015, 5, 14019.	3.3	28
144	Facile production of seaweed-based biomaterials with antioxidant and anti-inflammatory activities. Algal Research, 2017, 27, 1-11.	4.6	28

#	Article	IF	CITATIONS
145	Enhanced oil removal from water in oil stable emulsions using electrospun nanocomposite fiber mats. RSC Advances, 2018, 8, 7641-7650.	3.6	28
146	Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release. Carbohydrate Polymers, 2016, 136, 282-291.	10.2	27
147	Ceria/Gold Nanoparticles <i>in Situ</i> Synthesized on Polymeric Membranes with Enhanced Photocatalytic and Radical Scavenging Activity. ACS Applied Nano Materials, 2018, 1, 5601-5611.	5.0	27
148	Sustainable Electronics Based on Crop Plant Extracts and Graphene: A "Bioadvantaged―Approach. Advanced Sustainable Systems, 2018, 2, 1800069.	5.3	27
149	Low molecular weight ε-caprolactone-p-coumaric acid copolymers as potential biomaterials for skin regeneration applications. PLoS ONE, 2019, 14, e0214956.	2.5	27
150	Optical Gain from the Open Form of a Photochromic Molecule in the Solid State. Journal of Physical Chemistry B, 2006, 110, 4506-4509.	2.6	26
151	Improvement of thermal stability of poly(methyl methacrylate) by incorporation of colloidal TiO2 nanorods. Polymer Degradation and Stability, 2011, 96, 1377-1381.	5.8	26
152	Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals. Journal of Materials Chemistry, 2012, 22, 9787.	6.7	26
153	Oil removal from water–oil emulsions using magnetic nanocomposite fibrous mats. RSC Advances, 2016, 6, 71100-71107.	3.6	26
154	Influence of topography of nanofibrous scaffolds on functionality of engineered neural tissue. Journal of Materials Chemistry B, 2018, 6, 930-939.	5.8	26
155	Low-density PMMA/MAM nanocellular polymers using low MAM contents: Production and characterization. Polymer, 2019, 163, 115-124.	3.8	26
156	Comparison of physicochemical, mechanical and antioxidant properties of polyvinyl alcohol films containing green tealeaves waste extracts and discarded balsamic vinegar. Food Packaging and Shelf Life, 2020, 23, 100445.	7.5	26
157	In situ formation of SnO2 nanoparticles on cellulose acetate fibrous membranes for the photocatalytic degradation of organic dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112599.	3.9	26
158	Multifunctional PDMS polyHIPE filters for oil-water separation and antibacterial activity. Separation and Purification Technology, 2021, 255, 117748.	7.9	26
159	Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomaterialia, 2013, 9, 5111-5121.	8.3	25
160	Photochemical synthesis: Effect of UV irradiation on gold nanorods morphology. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 275, 7-11.	3.9	25
161	Bioelastomers Based on Cocoa Shell Waste with Antioxidant Ability. Advanced Sustainable Systems, 2017, 1, 1700002.	5.3	25
162	Understanding the role of MAM molecular weight in the production of PMMA/MAM nanocellular polymers. Polymer, 2018, 153, 262-270.	3.8	25

ATHANASSIA ATHANASSIOU

#	Article	IF	CITATIONS
163	Au/ZnO Hybrid Nanostructures on Electrospun Polymeric Mats for Improved Photocatalytic Degradation of Organic Pollutants. Water (Switzerland), 2019, 11, 1787.	2.7	25
164	Direct transformation of industrial vegetable waste into bioplastic composites intended for agricultural mulch films. Green Chemistry, 2021, 23, 5956-5971.	9.0	25
165	Smart photochromic gratings with switchable wettability realized by green-light interferometry. Applied Physics Letters, 2006, 88, 203124.	3.3	24
166	Highly Effective Antiadhesive Coatings from pHâ€Modified Waterâ€Dispersed Perfluorinated Acrylic Copolymers: The Case of Vulcanizing Rubber. Advanced Materials Interfaces, 2016, 3, 1600069.	3.7	24
167	Reversible Diffraction Efficiency of Photochromic Polymer Gratings Related to Photoinduced Dimensional Changes. Advanced Functional Materials, 2008, 18, 1617-1623.	14.9	23
168	Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring. Journal of Micromechanics and Microengineering, 2011, 21, 054007.	2.6	23
169	Localized synthesis of gold nanoparticles in anisotropic alginate structures. RSC Advances, 2014, 4, 20449.	3.6	23
170	Fumarate-loaded electrospun nanofibers with anti-inflammatory activity for fast recovery of mild skin burns. Biomedical Materials (Bristol), 2016, 11, 041001.	3.3	23
171	Poly(furfuryl alcohol)-Polycaprolactone Blends. Polymers, 2019, 11, 1069.	4.5	23
172	Water-induced plasticization in vegetable-based bioplastic films: A structural and thermo-mechanical study. Polymer, 2020, 200, 122598.	3.8	23
173	Wearable and self-healable textile-based strain sensors to monitor human muscular activities. Composites Part B: Engineering, 2021, 220, 108969.	12.0	23
174	Bio-based plastic films prepared from potato peels using mild acid hydrolysis followed by plasticization with a polyglycerol. Food Packaging and Shelf Life, 2021, 29, 100707.	7.5	23
175	Amplified Spontaneous Emission and Waveguiding Properties of the Colored Merocyanine Form of		

#	Article	IF	CITATIONS
181	A Review on Graphene Based Materials and Their Antimicrobial Properties. Coatings, 2021, 11, 1197.	2.6	22
182	Greaseproof, hydrophobic, and biodegradable food packaging bioplastics from C6-fluorinated cellulose esters. Food Hydrocolloids, 2022, 128, 107562.	10.7	22
183	A Thermochromic Superhydrophobic Surface. Scientific Reports, 2016, 6, 27984.	3.3	21
184	Investigation of in vitro hydrophilic and hydrophobic dual drug release from polymeric films produced by sodium alginate-MaterBi® drying emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 71-82.	4.3	21
185	Comprehensive Enhancement in Thermomechanical Performance of Melt-Extruded PEEK Filaments by Graphene Incorporation. Polymers, 2021, 13, 1425.	4.5	21
186	Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm. Laser Physics, 2013, 23, 035602.	1.2	20
187	Flexible nanocomposites with all-optical tactile sensing capability. RSC Advances, 2014, 4, 2820-2825.	3.6	20
188	Superhydrophobic/superoleophilic magnetic elastomers by laser ablation. Applied Surface Science, 2015, 351, 74-82.	6.1	20
189	Controlled antiseptic/eosin release from chitosan-based hydrogel modified fibrous substrates. Carbohydrate Polymers, 2015, 131, 306-314.	10.2	20
190	An efficient pure polyimide ammonia sensor. Journal of Materials Chemistry C, 2016, 4, 7790-7797.	5.5	20
191	Facile Oil Removal from Water-in-Oil Stable Emulsions Using PU Foams. Materials, 2018, 11, 2382.	2.9	20
192	Keratin–cinnamon essential oil biocomposite fibrous patches for skin burn care. Materials Advances, 2020, 1, 1805-1816.	5.4	20
193	Plant-based biocomposite films as potential antibacterial patches for skin wound healing. European Polymer Journal, 2021, 150, 110414.	5.4	20
194	Product Formation in the Laser Irradiation of Doped Poly(methyl methacrylate) at 248 nm:Â Implications for Chemical Effects in UV Ablation. Journal of Physical Chemistry B, 2004, 108, 7052-7060.	2.6	19
195	Combination of microstructuring and laser-light irradiation for the reversible wettability of photosensitised polymer surfaces. Applied Physics A: Materials Science and Processing, 2006, 83, 351-356.	2.3	19
196	Microscale Patterning of Hydrophobic/Hydrophilic Surfaces by Spatially Controlled Galvanic Displacement Reactions. Langmuir, 2009, 25, 6019-6023.	3.5	19
197	The Effect of Irradiation Wavelength on the Quality of CdS Nanocrystals Formed Directly into PMMA Matrix. Journal of Physical Chemistry C, 2010, 114, 13985-13990.	3.1	19
198	Real time optical pressure sensing for tactile detection using gold nanocomposite material. Microelectronic Engineering, 2011, 88, 2767-2770.	2.4	19

#	Article	IF	CITATIONS
199	Experimental Optical Characterization and Polymeric Layouts of Gold PDMS Nanocomposite Sensor for Liquid Detection. IEEE Sensors Journal, 2011, 11, 1780-1786.	4.7	19
200	Complex architectures formed by alginate drops floating on liquid surfaces. Soft Matter, 2013, 9, 6338.	2.7	19
201	Low stiffness tactile transducers based on AlN thin film and polyimide. Applied Physics Letters, 2015, 106, .	3.3	19
202	Single step in situ formation of porous zinc oxide/PMMA nanocomposites by pulsed laser irradiation: kinetic aspects and mechanisms. RSC Advances, 2016, 6, 11412-11418.	3.6	19
203	Reusable nanocomposite-coated polyurethane foams for the remediation of oil spills. International Journal of Environmental Science and Technology, 2017, 14, 2055-2066.	3.5	19
204	Sustainable polycondensation of multifunctional fatty acids from tomato pomace agro-waste catalyzed by tin (II) 2-ethylhexanoate. Materials Today Sustainability, 2019, 3-4, 100004.	4.1	19
205	A comparative study of the photochemical modifications effected in the UV laser ablation of doped polymer substrates. Applied Surface Science, 2000, 154-155, 89-94.	6.1	18
206	Thermal and Mechanical Characterization of PMMA TiO ₂ Nanocomposites. Advanced Materials Research, 0, 67, 209-214.	0.3	18
207	INNOVATIVE OPTICAL TACTILE SENSOR FOR ROBOTIC SYSTEM BY GOLD NANOCOMPOSITE MATERIAL. Progress in Electromagnetics Research M, 2011, 16, 145-158.	0.9	18
208	Surfactant-induced thermomechanical and morphological changes in TiO2-polystyrene nanocomposites. Journal of Colloid and Interface Science, 2013, 405, 103-108.	9.4	18
209	Pectin-Lipid Self-Assembly: Influence on the Formation of Polyhydroxy Fatty Acids Nanoparticles. PLoS ONE, 2015, 10, e0124639.	2.5	18
210	Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite. ACS Central Science, 2020, 6, 1578-1586.	11.3	18
211	Treatment of Coral Wounds by Combining an Antiseptic Bilayer Film and an Injectable Antioxidant Biopolymer. Scientific Reports, 2020, 10, 988.	3.3	18
212	Highly Porous Curcumin-Loaded Polymer Mats for Rapid Detection of Volatile Amines. ACS Applied Polymer Materials, 2022, 4, 4464-4475.	4.4	18
213	Photocontrolled wettability changes in polymer microchannels doped with photochromic molecules. Applied Physics Letters, 2007, 91, 113113.	3.3	17
214	Controlled Swapping of Nanocomposite Surface Wettability by Multilayer Photopolymerization. Langmuir, 2011, 27, 8522-8529.	3.5	17
215	Microfabrication of magnetically actuated PDMS–Iron composite membranes. Microelectronic Engineering, 2012, 98, 607-609.	2.4	17
216	Water-based synthesis of keratin micro- and nanoparticles with tunable mucoadhesive properties for drug delivery. Journal of Materials Chemistry B, 2019, 7, 4385-4392.	5.8	17

#	Article	IF	CITATIONS
217	Heat-Resistant Aphanizomenon flos-aquae (AFA) Extract (Klamin®) as a Functional Ingredient in Food Strategy for Prevention of Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	17
218	UV-Blocking, Transparent, and Antioxidant Polycyanoacrylate Films. Polymers, 2020, 12, 2011.	4.5	17
219	Highly biodegradable, ductile all-polylactide blends. Polymer, 2020, 193, 122371.	3.8	17
220	Antioxidant and hydrophobic Cotton fabric resisting accelerated ageing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126061.	4.7	17
221	Photocontrolled mechanical phenomena in photochromic doped polymeric systems. Applied Physics A: Materials Science and Processing, 2003, 76, 97-100.	2.3	16
222	Tuning of the characteristics of Au nanoparticles produced by solid target laser ablation into water by changing the irradiation parameters. Microscopy Research and Technique, 2010, 73, 937-943.	2.2	16
223	Directional enhancement of refractive index and tunable wettability of polymeric coatings due to preferential dispersion of colloidal TiO2 nanorods towards their surface. Thin Solid Films, 2010, 518, 4425-4431.	1.8	16
224	Electrical response from nanocomposite PDMS–Ag NPs generated by <i>in situ</i> laser ablation in solution. Nanotechnology, 2013, 24, 035707.	2.6	16
225	Parylene C Surface Functionalization and Patterning with pH-Responsive Microgels. ACS Applied Materials & amp; Interfaces, 2014, 6, 15708-15715.	8.0	16
226	Electrospun fibroin/polyurethane hybrid meshes: Manufacturing, characterization, and potentialities as substrates for haemodialysis arteriovenous grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 807-817.	3.4	16
227	Polylactic acid-graphene emulsion ink based conductive cotton fabrics. Journal of Materials Research and Technology, 2022, 18, 5197-5211.	5.8	16
228	Optically controlled liquid flow in initially prohibited elastomeric nanocomposite micro-paths. RSC Advances, 2012, 2, 9543.	3.6	15
229	Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment. Cellulose, 2013, 20, 1501-1509.	4.9	15
230	Omniphobic nanocomposite fiber mats with peel-away self similarity. Journal of Materials Chemistry A, 2015, 3, 23821-23828.	10.3	15
231	Thermally-induced in situ growth of ZnO nanoparticles in polymeric fibrous membranes. Composites Science and Technology, 2017, 149, 11-19.	7.8	15
232	Biowasteâ€Derived Carbonized Bone for Solar Steam Generation and Seawater Desalination. Advanced Sustainable Systems, 2021, 5, 2100031.	5.3	15
233	Determination of surface properties of various substrates using TiO2 nanorod coatings with tunable characteristics. Journal of Materials Science, 2008, 43, 3474-3480.	3.7	14
234	Localized formation and size tuning of CdS nanocrystals upon irradiation of metal precursors embedded in polymer matrices. Microelectronic Engineering, 2009, 86, 816-819.	2.4	14

#	Article	IF	CITATIONS
235	The Effect of Polymer Matrices in the <i>In-Situ</i> CdS Formation Under UV Irradiation of Precursor-Polymer Films. Journal of Nanoscience and Nanotechnology, 2010, 10, 1267-1272.	0.9	14
236	Nanocomposite Pattern-Mediated Magnetic Interactions for Localized Deposition of Nanomaterials. ACS Applied Materials & Interfaces, 2013, 5, 7253-7257.	8.0	14
237	Ultra-efficient, widely tunable gold nanoparticle-based fiducial markers for X-ray imaging. Nanoscale, 2016, 8, 18921-18927.	5.6	14
238	Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Applied Physics Letters, 2018, 113, 044103.	3.3	14
239	Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devices. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	14
240	UV laser ablation of halonaphthalene-doped PMMA: chemical modifications above versus below the ablation threshold. Applied Physics A: Materials Science and Processing, 1999, 69, S285-S289.	2.3	13
241	A comparative examination of photoproducts formed in the 248 and 193 nm ablation of doped PMMA. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 229-236.	3.9	13
242	Robot Tactile Sensing: Gold Nanocomposites As Highly Sensitive Real-Time Optical Pressure Sensors. IEEE Robotics and Automation Magazine, 2013, 20, 82-90.	2.0	13
243	Responsive Bio omposites from Magnesium Carbonate Filled Polycaprolactone and Curcuminâ€Functionalized Cellulose Fibers. Advanced Sustainable Systems, 2021, 5, 2100128.	5.3	13
244	3D cellulose fiber networks modified by PEDOT:PSS/graphene nanoplatelets for thermoelectric applications. Applied Physics Letters, 2022, 120, .	3.3	13
245	Optical enhancement by means of concentration tuning of gold precursors in polymer nanocomposite materials. Microelectronic Engineering, 2011, 88, 2763-2766.	2.4	12
246	Surprising High Hydrophobicity of Polymer Networks from Hydrophilic Components. ACS Applied Materials & Martine Samp; Interfaces, 2013, 5, 5717-5726.	8.0	12
247	Laser-induced localized formation of silver nanoparticles on chitosan films: study on particles size and density variation. Materials Research Express, 2015, 2, 105014.	1.6	12
248	Tunable Friction Behavior of Photochromic Fibrillar Surfaces. Langmuir, 2015, 31, 6072-6077.	3.5	12
249	Enhanced electrical conductivity of poly(methyl methacrylate) filled with graphene and <i>in situ</i> synthesized gold nanoparticles. Nano Futures, 2018, 2, 025003.	2.2	12
250	Plasmonic polyaniline/gold nanorods hybrid composites for selective NIR photodetection: Synthesis and characterization. Composites Part B: Engineering, 2018, 149, 178-187.	12.0	12
251	Development of biodegradable zein-based bilayer coatings for drug-eluting stents. RSC Advances, 2021, 11, 24345-24358.	3.6	12
252	Waterproof-breathable films from multi-branched fluorinated cellulose esters. Carbohydrate Polymers, 2021, 271, 118031.	10.2	12

#	Article	IF	CITATIONS
253	Formation and microscopic investigation of iron oxide aligned nanowires into polymeric nanocomposite films. Microscopy Research and Technique, 2010, 73, 952-958.	2.2	11
254	Comparison between laserâ€induced nucleation of ZnS and CdS nanocrystals directly into polymer matrices. Polymer Composites, 2010, 31, 1075-1083.	4.6	11
255	Characterization of fatigue resistance in photochromic composite materials for 3D rewritable optical memory applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 730-735.	3.5	11
256	Photo-polymerisable electrospun fibres of N-methacrylate glycol chitosan for biomedical applications. RSC Advances, 2015, 5, 24723-24728.	3.6	11
257	Controlled formation of gold nanostructures on biopolymer films upon electromagnetic radiation. Nanotechnology, 2017, 28, 415601.	2.6	11
258	Evaluation of a Multifunctional Polyvinylpyrrolidone/Hyaluronic Acid-Based Bilayer Film Patch with Anti-Inflammatory Properties as an Enhancer of the Wound Healing Process. Pharmaceutics, 2022, 14, 483.	4.5	11
259	Thermo-responsive nanofibers for on-demand biocompound delivery platform. Chemical Engineering Journal, 2022, 445, 136744.	12.7	11
260	Examination of chemical and structural modifications in the UV ablation of polymers. Applied Surface Science, 2002, 197-198, 757-763.	6.1	10
261	Influence of laser wavelength and pulse duration on the degradation of polymeric films embedding photochromic molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 182-189.	3.9	10
262	Radiofrequency characterization of polydimethylsiloxane – iron oxide based nanocomposites. Microelectronic Engineering, 2013, 111, 46-51.	2.4	10
263	Tailoring the morphology of poly(ethylene oxide)/silver triflate blends: from crystalline to self-assembled nanofibrillar structures. Nanotechnology, 2013, 24, 055602.	2.6	10
264	Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydrate Polymers, 2016, 149, 217-223.	10.2	10
265	Water Collection by Sticky Microislands on Superomniphobic Electrospun Surfaces. Advanced Materials Interfaces, 2016, 3, 1600606.	3.7	10
266	Plant-Inspired Polyaleuritate–Nanocellulose Composite Photonic Films. ACS Applied Polymer Materials, 2020, 2, 1528-1534.	4.4	10
267	Production of Green Star/Linear PLA Blends by Extrusion and Injection Molding: Tailoring Rheological and Mechanical Performances of Conventional PLA. Macromolecular Materials and Engineering, 2021, 306, 2000805.	3.6	10
268	Photoswitches operating upon ns pulsed laser irradiation. Applied Surface Science, 2005, 248, 56-61.	6.1	9
269	Dynamics of dopant product formation in the nanosecond irradiation of doped PMMA at 248 and 193 nm: Temporal evolution of temperature and viscosity. Chemical Physics Letters, 2006, 418, 317-322.	2.6	9
270	Controlling the reversible wetting capability of smart photochromic-polymer surfaces by micro patterning. Applied Physics A: Materials Science and Processing, 2008, 91, 397-401.	2.3	9

Athanassia Athanassiou

#	Article	IF	CITATIONS
271	Three-dimensional optical data storage through multi-photon confocal microscopy and imaging. Microelectronic Engineering, 2011, 88, 3466-3469.	2.4	9
272	Study of dynamic viscoelastic behavior of polystyrene films on addition of oleic acid. Microelectronic Engineering, 2011, 88, 1849-1851.	2.4	9
273	Photoinduced variable stiffness of spiropyran-based composites. Applied Physics Letters, 2011, 99, 201905.	3.3	9
274	Spontaneous Formation of Photochromic Coatings Made of Reversible Microfibrils and Nanofibrils on an Elastomer Substrate. Langmuir, 2014, 30, 13058-13064.	3.5	9
275	Sustainable, High-Barrier Polyaleuritate/Nanocellulose Biocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 10682-10690.	6.7	9
276	Biocatalytic oxidation of polyethylene by Agrocybe aegerita mycelium. Polymer Degradation and Stability, 2022, 199, 109911.	5.8	9
277	Self-Adhesive and Antioxidant Poly(vinylpyrrolidone)/Alginate-Based Bilayer Films Loaded with <i>Malva sylvestris</i> Extracts as Potential Skin Dressings. ACS Applied Bio Materials, 2022, 5, 2880-2893.	4.6	9
278	In Vitro High-Throughput Toxicological Assessment of Nanoplastics. Nanomaterials, 2022, 12, 1947.	4.1	9
279	Magnetic-Field-Induced Formation of Superparamagnetic Microwires in Suspension. Journal of Physical Chemistry C, 2014, 118, 28220-28226.	3.1	8
280	Marine Fouling Characteristics of Biocomposites in a Coral Reef Ecosystem. Advanced Sustainable Systems, 2021, 5, 2100089.	5.3	8
281	Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Frontiers in Neuroscience, 2021, 15, 731198.	2.8	8
282	Stone sustainable protection and preservation using a zein-based hydrophobic coating. Progress in Organic Coatings, 2021, 159, 106434.	3.9	8
283	Rapid Solvent-Free Microcrystalline Cellulose Melt Functionalization with <scp>l</scp> -Lactide for the Fabrication of Green Poly(lactic acid) Biocomposites. ACS Sustainable Chemistry and Engineering, 2022, 10, 9401-9410.	6.7	8
284	Modulating antibacterial properties using nanotechnology. Nanomedicine, 2011, 6, 1483-1485.	3.3	7
285	Metal-like conductivity exhibited by triboelectrically deposited polyaniline (emeraldine base) particles on microtextured SiC surfaces. Applied Physics Letters, 2012, 100, .	3.3	7
286	Effect of precursor solution dark incubation on gold nanorods morphology. Journal of Crystal Growth, 2012, 361, 159-165.	1.5	7
287	Polymeric foams with functional nanocomposite cells. RSC Advances, 2014, 4, 19177-19182.	3.6	7
288	Editorial: Non-polysaccharide Plant Polymeric Materials. Frontiers in Materials, 2016, 3, .	2.4	7

17

ATHANASSIA ATHANASSIOU

#	Article	IF	CITATIONS
289	Laser-induced in situ synthesis of Pd and Pt nanoparticles on polymer films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
290	Biomimetic Locomotion on Water of a Porous Natural Polymeric Composite. Advanced Materials Interfaces, 2016, 3, 1500854.	3.7	7
291	Titanium dioxide nanotube arrays coated with laminin enhance C2C12 skeletal myoblast adhesion and differentiation. RSC Advances, 2016, 6, 18502-18514.	3.6	7
292	Self-organized microporous cellulose-nylon membranes. Polymer, 2017, 120, 255-263.	3.8	7
293	Versatile Preparation of Branched Polylactides by Low-Temperature, Organocatalytic Ring-Opening Polymerization in <i>N</i> -Methylpyrrolidone and Their Surface Degradation Behavior. Macromolecules, 2021, 54, 9482-9495.	4.8	7
294	Wettability Control by Laser Texturing Process Generating Localized Gold Nanoparticles on Polymeric Thin Films. Journal of Nanoscience and Nanotechnology, 2012, 12, 4820-4824.	0.9	6
295	Combination of Lithography and Coating Methods for Surface Wetting Control. , 0, , .		6
296	Nanocomposite fabrication via direct ultra-fast laser ablation of titanium in aqueous monomer solution. Laser Physics Letters, 2015, 12, 125601.	1.4	6
297	Adhesion of elastomeric surfaces structured with micro-dimples. Applied Surface Science, 2015, 326, 145-150.	6.1	6
298	Oneâ€Pot Hybrid SnO ₂ /Poly(methyl methacrylate) Nanocomposite Formation through Pulsed Laser Irradiation. ChemPhysChem, 2017, 18, 1635-1641.	2.1	6
299	High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102282.	3.1	6
300	A novel approach to fabricate edible and heat sealable bio-based films from vegetable biomass rich in pectin. Materials Today Communications, 2022, 32, 103871.	1.9	6
301	Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications. Journal of Physics: Conference Series, 2007, 59, 266-272.	0.4	5
302	Synergistic Action of Alginate Chemical Reduction and Laser Irradiation for the Formation of Au Nanoparticles with Controlled Dimensions. Particle and Particle Systems Characterization, 2015, 32, 389-397.	2.3	5
303	Photocatalytic Activity of Cellulose Acetate Nanoceria/Pt Hybrid Mats Driven by Visible Light Irradiation. Polymers, 2021, 13, 912.	4.5	5
304	Gold nanostructured membranes to concentrate low molecular weight thiols, a proof of concept study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1198, 123244.	2.3	5
305	Laser and Material Parameter Dependence of the Chemical Modifications in the UV Laser Processing of Model Polymeric Solids. Laser Chemistry, 2002, 20, 1-21.	0.5	4
306	Tuning Concept and Design Criteria of Efficient Planar Metallic Plasmon Waveguides Using Nanocomposite Materials for Electromagnetic Radiation Applications. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1480-1488.	0.4	4

#	Article	IF	CITATIONS
307	GHz Properties of Magnetophoretically Aligned Iron-Oxide Nanoparticle Doped Polymers. ACS Applied Materials & Interfaces, 2013, 5, 2908-2914.	8.0	4
308	Twofold role of Hexadecyltrimethylammonium Bromide in photochemical synthesis of gold nanorods. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 76-84.	3.9	4
309	Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126950.	4.7	4
310	Revestimientos nanoestructurados para la protección de tejidos y papel. Ge-Conservacion, 0, 11, 180-188.	0.2	4
311	Zinc Polyaleuritate Ionomer Coatings as a Sustainable, Alternative Technology for Bisphenol A-Free Metal Packaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 15484-15495.	6.7	4
312	Modelling of implantable sensor packaging based on biocompatible polymers. , 2011, , .		3
313	Modeling and innovative technology of optical 3D antenna sensors as micro rectangular apertures. Optical and Quantum Electronics, 2012, 44, 213-218.	3.3	3
314	Laser-induced disaggregation of TiO ₂ nanofillers for uniform nanocomposites. Nanotechnology, 2014, 25, 125702.	2.6	3
315	Investigation of the electro-spinnability of alginate solutions containing gold precursor HAuCl 4. Journal of Colloid and Interface Science, 2016, 483, 60-66.	9.4	3
316	Melamine Foams Decorated with In-Situ Synthesized Gold and Palladium Nanoparticles. Polymers, 2020, 12, 934.	4.5	3
317	Paper Sensors Based on Fluorescence Changes of Carbon Nanodots for Optical Detection of Nanomaterials. Sustainability, 2021, 13, 11896.	3.2	3
318	Bioplastics from Vegetable Waste: A Versatile Platform for the Fabrication of Polymer Films. ACS Symposium Series, 2020, , 179-192.	0.5	3
319	Antioxidant and Biocompatible CO ₂ â€Based Biocomposites from Vegetable Wastes for Active Food Packaging. Advanced Sustainable Systems, 0, , 2100470.	5.3	3
320	Antioxidant coatings from elastomeric vinyl acetate-vinyl laurate copolymers with reduced bacterial adhesion. Progress in Organic Coatings, 2022, 168, 106883.	3.9	3
321	Reversible wettability of hybrid organic/inorganic surfaces of systems upon light irradiation/storage cycles. International Journal of Nanomanufacturing, 2010, 6, 312.	0.3	2
322	New generation of optical robotic sensor applied to small notch detection. , 2011, , .		2
323	Fundamental aspects of photochemical effects in UV laser ablation. , 2001, 4430, 147.		1
324	Introduction to special issue on nanophysics. Microscopy Research and Technique, 2010, 73, n/a-n/a.	2.2	1

#	Article	IF	CITATIONS
325	Characterization of fatigue resistance property of photochrome materials for optical storage devices. , 2010, , .		1
326	FEM modeling of conductivity and electrical coupling in polymeric nanocomposite material. , 2011, , .		1
327	Photocontrolled Reversible Dimensional Changes of Microstructured Photochromic Polymers. , 0, , .		1
328	Optical data storage in photochromic compounds. , 2011, , .		1
329	Improvements of Optical Tactile Sensors for Robotic System by Gold Nanocomposite Material. Journal of Nanoscience and Nanotechnology, 2012, 12, 4878-4882.	0.9	1
330	Magnetoactive Superhydrophobic Foams for Oil-Water Separation. Advances in Science and Technology, 2012, 77, 159-164.	0.2	1
331	Formation of magnetically anisotropic composite films at low magnetic fields. Smart Materials and Structures, 2017, 26, 045018.	3.5	1
332	Disposable radiosondes for tracking Lagrangian fluctuations inside warm clouds. , 2017, , .		1
333	New Approaches of Nanocomposite Materials for Electromagnetic Sensors and Robotics. International Journal on Measurement Technologies and Instrumentation Engineering, 2011, 1, 55-72.	0.3	1
334	Fundamental aspects in the laser restoration of painted artworks. , 2001, , .		0
335	Modeling of chemical and mechanical aspects in laser restoration of artworks. , 2002, 4426, 296.		0
336	Chemical and structural modifications in the UV ablation of polymers. , 2002, , .		0
337	Optomechanical cycles of photochromic-polymer microsystems induced by laser irradiation. , 2003, , .		0
338	MEG/STRD modeling of optical antenna sensors as micro rectangular apertures. , 2011, , .		0
339	Magnetic Field Induced Formation of Magnetic Wires into Thin Elastic Membranes with Controlled Properties. Advances in Science and Technology, 2012, 77, 343-347.	0.2	0
340	New Approaches of Nanocomposite Materials for Electromagnetic Sensors and Robotics. , 2013, , 57-73.		0
341	Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues. , 2014, , 29-76.		0