Carla Taveggia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5521622/publications.pdf Version: 2024-02-01

CADLA TAVECCIA

#	Article	IF	CITATIONS
1	Neuregulin-1 Type III Determines the Ensheathment Fate of Axons. Neuron, 2005, 47, 681-694.	8.1	634
2	Signals to promote myelin formation and repair. Nature Reviews Neurology, 2010, 6, 276-287.	10.1	234
3	New insights on schwann cell development. Clia, 2015, 63, 1376-1393.	4.9	210
4	Type III neuregulinâ€1 promotes oligodendrocyte myelination. Glia, 2008, 56, 284-293.	4.9	171
5	TACE (ADAM17) inhibits Schwann cell myelination. Nature Neuroscience, 2011, 14, 857-865.	14.8	136
6	Dlg1, Sec8, and Mtmr2 Regulate Membrane Homeostasis in Schwann Cell Myelination. Journal of Neuroscience, 2009, 29, 8858-8870.	3.6	101
7	Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination. Nature Neuroscience, 2014, 17, 1682-1692.	14.8	66
8	Schwann cells–axon interaction in myelination. Current Opinion in Neurobiology, 2016, 39, 24-29.	4.2	64
9	Nerves and Pancreatic Cancer: New Insights into a Dangerous Relationship. Cancers, 2019, 11, 893.	3.7	50
10	Niacinâ€mediated Tace activation ameliorates <scp>CMT</scp> neuropathies with focal hypermyelination. EMBO Molecular Medicine, 2016, 8, 1438-1454.	6.9	48
11	Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biology, 2017, 15, e2001408.	5.6	44
12	A minimal human MBP Promoter-lacZ transgene is appropriately regulated in developing brain and after optic enucleation, but not in shiverer mutant mice. Journal of Neurobiology, 1998, 34, 10-26.	3.6	37
13	Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nature Communications, 2017, 8, 14088.	12.8	28
14	Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Human Molecular Genetics, 2019, 28, 1260-1273.	2.9	28
15	The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Frontiers in Cellular Neuroscience, 2019, 13, 93.	3.7	23
16	DRG Neuron/Schwann Cells Myelinating Cocultures. Methods in Molecular Biology, 2018, 1791, 115-129.	0.9	19
17	Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
18	Prostaglandin D2 synthase modulates macrophage activity and accumulation in injured peripheral nerves. Glia, 2020, 68, 95-110.	4.9	13

CARLA TAVEGGIA

#	Article	IF	CITATIONS
19	Beyond Wrapping: Canonical and Noncanonical Functions of Schwann Cells. Annual Review of Neuroscience, 2022, 45, 561-580.	10.7	11
20	Schwann cell energy to die for. Nature Neuroscience, 2020, 23, 1179-1181.	14.8	10
21	Ablation of neuronal ADAM17 impairs oligodendrocyte differentiation and myelination. Glia, 2020, 68, 1148-1164.	4.9	2
22	ADAM17 Regulates p75 ^{NTR} -Mediated Fibrinolysis and Nerve Remyelination. Journal of Neuroscience, 2022, 42, 2433-2447.	3.6	2