Jorge E GalÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5521200/publications.pdf

Version: 2024-02-01

22153 28297 15,481 109 59 105 citations g-index h-index papers 117 117 117 10565 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Protein delivery into eukaryotic cells by type III secretion machines. Nature, 2006, 444, 567-573.	27.8	938
2	RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature, 2002, 416, 194-199.	27.8	827
3	S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells. Cell, 1998, 93, 815-826.	28.9	764
4	SalmonellaInteractions with Host Cells: Type III Secretion at Work. Annual Review of Cell and Developmental Biology, 2001, 17, 53-86.	9.4	668
5	A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature, 1999, 401, 293-297.	27.8	507
6	Molecular genetic bases of Salmonella entry into host cells. Molecular Microbiology, 1996, 20, 263-271.	2.5	465
7	Bacterial Type III Secretion Systems: Specialized Nanomachines for Protein Delivery into Target Cells. Annual Review of Microbiology, 2014, 68, 415-438.	7.3	462
8	Salmonella spp. are cytotoxic for cultured macrophages. Molecular Microbiology, 1996, 21, 1101-1115.	2.5	386
9	A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology, 2001, 39, 248-260.	2.5	348
10	Role of the caspase-1 inflammasome in <i>Salmonella typhimurium</i> pathogenesis. Journal of Experimental Medicine, 2006, 203, 1407-1412.	8.5	345
11	Structural Insights into the Assembly of the Type III Secretion Needle Complex. Science, 2004, 306, 1040-1042.	12.6	330
12	The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Molecular Microbiology, 1994, 13, 555-568.	2.5	314
13	Common and Contrasting Themes of Plant and Animal Diseases. Science, 2001, 292, 2285-2289.	12.6	309
14	The invasionâ€associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Molecular Microbiology, 1997, 24, 747-756.	2.5	294
15	Structural mimicry in bacterial virulence. Nature, 2001, 412, 701-705.	27.8	287
16	Common Themes in the Design and Function of Bacterial Effectors. Cell Host and Microbe, 2009, 5, 571-579.	11.0	281
17	Salmonella Modulates Vesicular Traffic by Altering Phosphoinositide Metabolism. Science, 2004, 304, 1805-1807.	12.6	279
18	YopJ ofYersinia pseudotuberculosisis required for the inhibition of macrophage TNFâ€Î± production and downregulation of the MAP kinases p38 and JNK. Molecular Microbiology, 1998, 27, 953-965.	2.5	278

#	Article	IF	Citations
19	Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature, 2001, 414, 77-81.	27.8	272
20	Differential activation and function of Rho GTPases during Salmonella–host cell interactions. Journal of Cell Biology, 2006, 175, 453-463.	5.2	250
21	Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature, 1992, 357, 588-589.	27.8	247
22	A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Molecular Microbiology, 1996, 21, 633-641.	2.5	245
23	Manipulation of the host actin cytoskeleton by Salmonella — all in the name of entry. Current Opinion in Microbiology, 2005, 8, 10-15.	5.1	242
24	A Sorting Platform Determines the Order of Protein Secretion in Bacterial Type III Systems. Science, 2011, 331, 1188-1191.	12.6	241
25	The <i>Salmonella typhimurium</i> tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Molecular Microbiology, 1998, 27, 359-368.	2.5	228
26	Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4614-4619.	7.1	215
27	Protein-Injection Machines in Bacteria. Cell, 2018, 172, 1306-1318.	28.9	214
28	Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature, 2013, 499, 350-354.	27.8	201
29	In Situ Molecular Architecture of the Salmonella Type III Secretion Machine. Cell, 2017, 168, 1065-1074.e10.	28.9	186
30	Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells. PLoS Pathogens, 2009, 5, e1000538.	4.7	177
31	Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature, 2006, 441, 637-640.	27.8	176
32	Delivery of a Salmonella Typhi Exotoxin from a Host Intracellular Compartment. Cell Host and Microbe, 2008, 3, 30-38.	11.0	168
33	CROSS-TALK BETWEEN BACTERIAL PATHOGENS AND THEIR HOST CELLS. Annual Review of Cell and Developmental Biology, 1996, 12, 221-255.	9.4	155
34	<i>Salmonella enterica</i> Serovar Typhimurium Pathogenicity Island 1-Encoded Type III Secretion System Translocases Mediate Intimate Attachment to Nonphagocytic Cells. Infection and Immunity, 2009, 77, 2635-2642.	2.2	155
35	A Mouse Model for the Human Pathogen Salmonella Typhi. Cell Host and Microbe, 2010, 8, 369-376.	11.0	154
36	Metabolic Diversity in Campylobacter jejuni Enhances Specific Tissue Colonization. Cell Host and Microbe, 2008, 4, 425-433.	11.0	148

#	Article	IF	CITATIONS
37	A Rab32-Dependent Pathway Contributes to <i>Salmonella</i> Typhi Host Restriction. Science, 2012, 338, 960-963.	12.6	140
38	Organization and coordinated assembly of the type III secretion export apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17745-17750.	7.1	137
39	Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Molecular Microbiology, 1993, 7, 89-98.	2.5	124
40	Topology and Organization of the Salmonella typhimurium Type III Secretion Needle Complex Components. PLoS Pathogens, 2010, 6, e1000824.	4.7	119
41	Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends in Microbiology, 2002, 10, 147-152.	7.7	118
42	Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18418-18423.	7.1	113
43	A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP. Cell Host and Microbe, 2016, 19, 216-226.	11.0	110
44	Salmonella Type III Secretion-Associated Protein InvE Controls Translocation of Effector Proteins into Host Cells. Journal of Bacteriology, 2002, 184, 4699-4708.	2.2	107
45	Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nature Reviews Microbiology, 2021, 19, 716-725.	28.6	107
46	Host Adaptation of a Bacterial Toxin from the Human Pathogen Salmonella Typhi. Cell, 2014, 159, 1290-1299.	28.9	101
47	Visualization of the type III secretion mediated Salmonella–host cell interface using cryo-electron tomography. ELife, 2018, 7, .	6.0	100
48	Selective Inhibition of Type III Secretion Activated Signaling by the Salmonella Effector AvrA. PLoS Pathogens, 2009, 5, e1000595.	4.7	96
49	Identification of <i>Campylobacter jejuni</i> Genes Involved in Its Interaction with Epithelial Cells. Infection and Immunity, 2010, 78, 3540-3553.	2.2	90
50	Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates. Journal of the American Chemical Society, 2016, 138, 2209-2218.	13.7	87
51	Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against <i>Salmonella</i> . Science, 2020, 369, 450-455.	12.6	87
52	The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members. PLoS Pathogens, 2016, 12, e1005552.	4.7	79
53	A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis. PLoS Pathogens, 2016, 12, e1005484.	4.7	79
54	Salmonella Modulation of Host Cell Gene Expression Promotes Its Intracellular Growth. PLoS Pathogens, 2013, 9, e1003668.	4.7	76

#	Article	IF	Citations
55	Typhoid toxin provides a window into typhoid fever and the biology of <i>Salmonella </i> Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6338-6344.	7.1	76
56	Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Molecular Microbiology, 2002, 46, 769-779.	2.5	71
57	Genetic Analysis of the Salmonella enterica Type III Secretion-Associated ATPase InvC Defines Discrete Functional Domains. Journal of Bacteriology, 2004, 186, 2402-2412.	2.2	71
58	Visualization and characterization of individual type III protein secretion machines in live bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6098-6103.	7.1	69
59	Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus. PLoS Pathogens, 2016, 12, e1006071.	4.7	66
60	A MyD88-Deficient Mouse Model Reveals a Role for Nramp1 in Campylobacter jejuni Infection. Infection and Immunity, 2007, 75, 1994-2003.	2.2	62
61	Characterization of SprA, an AraC-like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island 1. Molecular Microbiology, 1999, 33, 139-152.	2.5	61
62	Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming. PLoS Pathogens, 2012, 8, e1002562.	4.7	60
63	Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach. Molecular and Cellular Proteomics, 2016, 15, 1598-1609.	3.8	58
64	Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biology, 2017, 15, e2001390.	5.6	58
65	Taking control: Hijacking of Rab GTPases by intracellular bacterial pathogens. Small GTPases, 2018, 9, 182-191.	1.6	58
66	Novel Components of the Flagellar System in Epsilonproteobacteria. MBio, 2014, 5, e01349-14.	4.1	57
67	Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nature Communications, 2013, 4, 1590.	12.8	56
68	Requirement of p21-activated Kinase (PAK) for Salmonella typhimurium–induced Nuclear Responses. Journal of Experimental Medicine, 1999, 189, 1479-1488.	8.5	48
69	Receptor-Mediated Sorting of Typhoid Toxin during Its Export from Salmonella Typhi-Infected Cells. Cell Host and Microbe, 2016, 20, 682-689.	11.0	46
70	High-resolution view of the type III secretion export apparatus in situ reveals membrane remodeling and a secretion pathway. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24786-24795.	7.1	46
71	A <i>Salmonella </i> Typhi homologue of bacteriophage muramidases controls typhoid toxin secretion. EMBO Reports, 2013, 14, 95-102.	4.5	44
72	The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells. EcoSal Plus, 2019, 8, .	5.4	44

#	Article	IF	Citations
73	The inner rod protein controls substrate switching and needle length in a <i>Salmonella</i> type III secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 817-822.	7.1	43
74	Salmonella enterica serovar-specific transcriptional reprogramming of infected cells. PLoS Pathogens, 2017, 13, e1006532.	4.7	42
75	Role of Autocleavage in the Function of a Type III Secretion Specificity Switch Protein in Salmonella enterica Serovar Typhimurium. MBio, 2015, 6, e01459-15.	4.1	40
76	Evolution of host adaptation in the Salmonella typhoid toxin. Nature Microbiology, 2017, 2, 1592-1599.	13.3	40
77	Peptidoglycan editing by a specific ld-transpeptidase controls the muramidase-dependent secretion of typhoid toxin. Nature Microbiology, 2018, 3, 1243-1254.	13.3	40
78	Decoding a Salmonella Typhi Regulatory Network that Controls Typhoid Toxin Expression within Human Cells. Cell Host and Microbe, 2018, 23, 65-76.e6.	11.0	38
79	NMR Model of Prgl–SipD Interaction and Its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System. Journal of Molecular Biology, 2014, 426, 2958-2969.	4.2	36
80	Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nature Microbiology, 2018, 3, 1122-1130.	13.3	35
81	<i>In Situ</i> Structures of Polar and Lateral Flagella Revealed by Cryo-Electron Tomography. Journal of Bacteriology, 2019, 201, .	2.2	34
82	Contribution of Amino Acid Catabolism to the Tissue Specific Persistence of Campylobacter jejuni in a Murine Colonization Model. PLoS ONE, 2012, 7, e50699.	2.5	33
83	Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nature Medicine, 2019, 25, 1082-1088.	30.7	33
84	Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathogens, 2019, 15, e1007704.	4.7	33
85	Emerging insights into the biology of typhoid toxin. Current Opinion in Microbiology, 2017, 35, 70-77.	5.1	32
86	Role of SpaO in the assembly of the sorting platform of a Salmonella type III secretion system. PLoS Pathogens, 2019, 15, e1007565.	4.7	32
87	The Salmonella Type III Secretion System Inner Rod Protein PrgJ Is Partially Folded. Journal of Biological Chemistry, 2012, 287, 25303-25311.	3.4	28
88	A protein secreted by the Salmonella type III secretion system controls needle filament assembly. ELife, $2018, 7, .$	6.0	26
89	An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever. Journal of Infection, 2017, 75, 104-114.	3.3	23
90	A polymorphic helix of a Salmonella needle protein relays signals defining distinct steps in type III secretion. PLoS Biology, 2019, 17, e3000351.	5 . 6	23

#	Article	IF	Citations
91	Alternate subunit assembly diversifies the function of a bacterial toxin. Nature Communications, 2019, 10, 3684.	12.8	21
92	The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nature Microbiology, 2021, 6, 658-671.	13.3	21
93	Biophysical characterization of SipA, an actin-binding protein from Salmonella enterica. FEBS Letters, 2000, 482, 81-84.	2.8	19
94	SnapShot: Effector Proteins of Type III Secretion Systems. Cell, 2007, 130, 192.e1-192.e2.	28.9	19
95	Characterization of a <i>Campylobacter jejuni</i> VirK Protein Homolog as a Novel Virulence Determinant. Infection and Immunity, 2009, 77, 5428-5436.	2.2	19
96	Bacterial toxins and the immune system. Journal of Experimental Medicine, 2005, 201, 321-323.	8.5	14
97	Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase. ELife, 2020, 9, .	6.0	14
98	Structural Features Reminiscent of ATP-Driven Protein Translocases Are Essential for the Function of a Type III Secretion-Associated ATPase. Journal of Bacteriology, 2015, 197, 3007-3014.	2.2	12
99	Structural and enzymatic characterization of a host-specificity determinant from <i>Salmonella</i> Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 384-391.	2.5	12
100	Cryo-EM structure of the needle filament tip complex of the <i>Salmonella </i> type III secretion injectisome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
101	The cell biology of microbial infections. Journal of Cell Biology, 2002, 158, 387-388.	5.2	7
102	Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. ELife, 2022, 11, .	6.0	6
103	A novel anti-microbial function for a familiar Rab GTPase. Small GTPases, 2013, 4, 252-254.	1.6	5
104	Bacterial injection machines: Evolutionary diverse but functionally convergent. Cellular Microbiology, 2020, 22, e13157.	2.1	3
105	Generation and Characterization of Typhoid Toxin-Neutralizing Human Monoclonal Antibodies. Infection and Immunity, 2020, 88, .	2.2	3
106	Interaction of Campylobacter jejuni with Host Cells. , 2014, , 287-296.		2
107	The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells., 2019,, 245-259.		1
108	A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology, 2001, 40, 1461-1461.	2.5	0

#	Article	IF	CITATIONS
109	Modulation of the actin cytoskeleton by Salmonella. FASEB Journal, 2008, 22, 530.1.	0.5	0