Dimitri Stanicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5521179/publications.pdf

Version: 2024-02-01

		567281	477307
29	882	15	29
papers	citations	h-index	g-index
30	30	30	1450
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16, 69-78.	5.0	364
2	Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 2015, 8, 7-14.	7.8	55
3	Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale, 2015, 7, 3754-3767.	5.6	47
4	Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging. Journal of Materials Chemistry B, 2014, 2, 387-397.	5.8	36
5	Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicology Reports, 2018, 5, 878-889.	3.3	36
6	Influence of experimental parameters on iron oxide nanoparticle properties synthesized by thermal decomposition: size and nuclear magnetic resonance studies. Nanotechnology, 2018, 29, 165603.	2.6	31
7	An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 321-335.	5.0	29
8	A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation. International Journal of Biochemistry and Cell Biology, 2016, 75, 203-211.	2.8	28
9	MRI Contrast Agents. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.4	24
10	Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 2019, 24, 4629.	3.8	24
11	New carboxysilaneâ€coated iron oxide nanoparticles for nonspecific cell labelling. Contrast Media and Molecular Imaging, 2013, 8, 466-474.	0.8	23
12	Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T1-Weighted Magnetic Resonance Imaging (MRI). Nanomaterials, 2020, 10, 757.	4.1	19
13	Human Alveolar Epithelial Cell Responses to Core–Shell Superparamagnetic Iron Oxide Nanoparticles (SPIONs). Langmuir, 2015, 31, 3829-3839.	3 . 5	18
14	VSION as high field MRI T1 contrast agent: evidence of their potential as positive contrast agent for magnetic resonance angiography. Nanotechnology, 2018, 29, 265103.	2.6	18
15	Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Scientific Reports, 2021, 11, 3286.	3.3	16
16	Embedding of superparamagnetic iron oxide nanoparticles into membranes of well-defined poly(ethylene oxide)-block-poly(ε-caprolactone) nanoscale magnetovesicles as ultrasensitive MRI probes of membrane bio-degradation. Journal of Materials Chemistry B, 2019, 7, 4692-4705.	5.8	15
17	Functionalization of the PEG Corona of Nanoparticles by Clip Photochemistry in Water: Application to the Grafting of RGD Ligands on PEGylated USPIO Imaging Agent. Bioconjugate Chemistry, 2015, 26, 822-829.	3.6	13
18	Bimodal Probe for Magnetic Resonance Imaging and Photoacoustic Imaging Based on a PCTAâ€Derived Gadolinium(III) Complex and ZW800–1. European Journal of Inorganic Chemistry, 2019, 2019, 3354-3365.	2.0	13

#	Article	IF	CITATIONS
19	Development of an LDL Receptor-Targeted Peptide Susceptible to Facilitate the Brain Access of Diagnostic or Therapeutic Agents. Biology, 2020, 9, 161.	2.8	13
20	Nanodiamonds as nanomaterial for biomedical field. Frontiers of Materials Science, 2021, 15, 334-351.	2.2	11
21	Validation by Magnetic Resonance Imaging of the Diagnostic Potential of a Heptapeptide-Functionalized Imaging Probe Targeted to Amyloid-β and Able to Cross the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2017, 60, 1547-1565.	2.6	10
22	Impact of the chain length on the biodistribution profiles of PEGylated iron oxide nanoparticles: a multimodal imaging study. Journal of Materials Chemistry B, 2021, 9, 5055-5068.	5 . 8	9
23	Magnetic and radio-labeled bio-hybrid scaffolds to promote and track <i>in vivo</i> the progress of bone regeneration. Biomaterials Science, 2021, 9, 7575-7590.	5.4	9
24	Molecular Imaging of Galectin-1 Expression as a Biomarker of Papillary Thyroid Cancer by Using Peptide-Functionalized Imaging Probes. Biology, 2020, 9, 53.	2.8	5
25	Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging. Nanoscale, 2021, 13, 16509-16524.	5. 6	5
26	Surface engineering of silica nanoparticles with a gadolinium–PCTA complex for efficient <i>T</i> ₁ -weighted MRI contrast agents. New Journal of Chemistry, 2020, 44, 18031-18047.	2.8	4
27	Interaction between Iron Oxide Nanoparticles and HepaRG Cells: A Preliminary (i>In Vitro (i) Evaluation. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	3
28	Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1. Medical Oncology, 2017, 34, 184.	2.5	3
29	Bimodal Probe for Magnetic Resonance Imaging and Photoacoustic Imaging Based on a PCTA-Derived Gadolinium(III) Complex and ZW800-1. European Journal of Inorganic Chemistry, 2019, 2019, 3353-3353.	2.0	O