Caroline Freissinet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5519857/publications.pdf

Version: 2024-02-01

50 papers

6,525 citations

30 h-index 50 g-index

50 all docs 50 docs citations

times ranked

50

3707 citing authors

#	Article	IF	CITATIONS
1	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
2	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
3	The Sample Analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 2012, 170, 401-478.	8.1	435
4	Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2015, 120, 495-514.	3.6	375
5	Mars methane detection and variability at Gale crater. Science, 2015, 347, 415-417.	12.6	373
6	Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 2018, 360, 1096-1101.	12.6	369
7	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
8	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
9	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
10	Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research E: Planets, 2013, 118, 1955-1973.	3.6	306
11	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
12	Isotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	12.6	241
13	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	12.6	224
14	The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments. Astrobiology, 2017, 17, 655-685.	3.0	185
15	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	7.1	172
16	Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research E: Planets, 2017, 122, 2574-2609.	3.6	168
17	Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Chemie Der Erde, 2020, 80, 125605.	2.0	137
18	The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.	12.6	113

#	Article	IF	Citations
19	Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Planetary and Space Science, 2017, 138, 44-54.	1.7	84
20	Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Science Journal, 2021, 2, 130.	3.6	80
21	In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth and Planetary Science Letters, 2016, 454, 1-9.	4.4	59
22	Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geoscience, 2017, 10, 658-662.	12.9	53
23	MOMA: the challenge to search for organics and biosignatures on Mars. International Journal of Astrobiology, 2016, 15, 239-250.	1.6	52
24	First Detections of Dichlorobenzene Isomers and Trichloromethylpropane from Organic Matter Indigenous to Mars Mudstone in Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument Onboard the Curiosity Rover. Astrobiology, 2020, 20, 292-306.	3.0	50
25	Search for evidence of life in space: Analysis of enantiomeric organic molecules by N,N-dimethylformamide dimethylacetal derivative dependant Gas Chromatography–Mass Spectrometry. Journal of Chromatography A, 2010, 1217, 731-740.	3.7	48
26	Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy, 2020, 4, 526-532.	10.1	41
27	Light and variable 37 Cl/ 35 Cl ratios in rocks from Gale Crater, Mars: Possible signature of perchlorate. Earth and Planetary Science Letters, 2016, 438, 14-24.	4.4	39
28	Development of a gas chromatography compatible Sample Processing System (SPS) for the in-situ analysis of refractory organic matter in martian soil: preliminary results. Advances in Space Research, 2009, 43, 143-151.	2.6	36
29	Potential precursor compounds for chlorohydrocarbons detected in Gale Crater, Mars, by the SAM instrument suite on the Curiosity Rover. Journal of Geophysical Research E: Planets, 2016, 121, 296-308.	3.6	33
30	Recovery of Fatty Acids from Mineralogic Mars Analogs by TMAH Thermochemolysis for the Sample Analysis at Mars Wet Chemistry Experiment on the Curiosity Rover. Astrobiology, 2019, 19, 522-546.	3.0	33
31	Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis. Journal of Geophysical Research E: Planets, 2016, 121, 61-74.	3. 6	31
32	Organic molecules revealed in Mars's Bagnold Dunes by Curiosity's derivatization experiment. Nature Astronomy, 2022, 6, 129-140.	10.1	29
33	In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements. Planetary and Space Science, 2016, 129, 88-102.	1.7	27
34	Evaluation of the Tenax trap in the Sample Analysis at Mars instrument suite on the Curiosity rover as a potential hydrocarbon source for chlorinated organics detected in Gale Crater. Journal of Geophysical Research E: Planets, 2015, 120, 1446-1459.	3.6	23
35	Enantiomeric separation of volatile organics by gas chromatography for the in situ analysis of extraterrestrial materials: Kinetics and thermodynamics investigation of various chiral stationary phases. Journal of Chromatography A, 2013, 1306, 59-71.	3.7	22
36	Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA. Icarus, 2013, 224, 309-325.	2.5	21

#	Article	IF	CITATIONS
37	Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. Astrobiology, 2022, 22, 685-712.	3.0	21
38	Major Volatiles Evolved From Eolian Materials in Gale Crater. Geophysical Research Letters, 2018, 45, 10,240.	4.0	19
39	The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments. TrAC - Trends in Analytical Chemistry, 2020, 127, 115896.	11.4	18
40	Comparison of Prototype and Laboratory Experiments on MOMA GCMS: Results from the AMASE11 Campaign. Astrobiology, 2014, 14, 780-797.	3.0	17
41	Application of TMAH thermochemolysis to the detection of nucleobases: Application to the MOMA and SAM space experiment. Talanta, 2019, 204, 802-811.	5.5	14
42	Integrity and Biological Activity of DNA after UV Exposure. Astrobiology, 2010, 10, 285-292.	3.0	13
43	Role of the Tenax® Adsorbent in the Interpretation of the EGA and GCâ€MS Analyses Performed With the Sample Analysis at Mars in Gale Crater. Journal of Geophysical Research E: Planets, 2019, 124, 2819-2851.	3.6	13
44	Benzoic Acid as the Preferred Precursor for the Chlorobenzene Detected on Mars: Insights from the Unique Cumberland Analog Investigation. Planetary Science Journal, 2020, 1, 41.	3.6	12
45	Investigating the effects of gamma radiation on selected chemicals for use in biosignature detection instruments on the surface of Jupiter's moon Europa. Planetary and Space Science, 2019, 175, 1-12.	1.7	11
46	Influence of Calcium Perchlorate on the Search for Organics on Mars with Tetramethylammonium Hydroxide Thermochemolysis. Astrobiology, 2021, 21, 279-297.	3.0	10
47	Testing the capabilities of the Mars Organic Molecule Analyser (MOMA) chromatographic columns for the separation of organic compounds on Mars. Planetary and Space Science, 2020, 186, 104903.	1.7	9
48	Europan Molecular Indicators of Life Investigation (EMILI) for a Future Europa Lander Mission. Frontiers in Space Technologies, 2022, 2, .	1.4	7
49	Influence of Calcium Perchlorate on the Search for Martian Organic Compounds with MTBSTFA/DMF Derivatization. Astrobiology, 2021, 21, 1137-1156.	3.0	6
50	Evaluation of the robustness of chromatographic columns in a simulated highly radiative Jovian environment. Planetary and Space Science, 2016, 122, 38-45.	1.7	4