Subho Mozumdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5519165/publications.pdf

Version: 2024-02-01

54 papers 2,088 citations

257450 24 h-index 233421 45 g-index

58 all docs

58 docs citations

58 times ranked 2709 citing authors

#	Article	IF	CITATIONS
1	Imidazole-Functionalized Porous Graphene Oxide Nanosheets Loaded with Palladium Nanoparticles for the Oxidative Amidation of Aldehydes. ACS Applied Nano Materials, 2022, 5, 5776-5792.	5.0	5
2	RuxPdy Alloy Nanoparticles Uniformly Anchored on Reduced Graphene Oxide Nanosheets (RuxPdy@rGO): A Recyclable Catalyst. ACS Omega, 2021, 6, 1415-1425.	3.5	13
3	Effect of solvent on the photophysical properties of isoxazole derivative of curcumin: A combined spectroscopic and theoretical study. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113164.	3.9	11
4	Amine grafted Fe3O4 immobilized graphene oxide as a recyclable and effectual nanocomposite for the regioselective ring opening reaction. Research on Chemical Intermediates, 2021, 47, 4013-4028.	2.7	4
5	Perturbations in the photophysical properties of isoxazole derivative of curcumin up on interaction with different anionic, cationic and non-ionic surfactants. Journal of Molecular Liquids, 2021, 343, 116981.	4.9	6
6	Solvent dependent photophysical study of stable and medicinally active diketone modified pyrazole derivatives of curcumin: A spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113337.	3.9	3
7	Palladium oxide-decorated mesoporous silica on graphene oxide nanosheets as a heterogeneous catalyst for the synthesis of \hat{l}^2 -substituted indole derivatives. Dalton Transactions, 2021, 50, 5644-5658.	3.3	2
8	Influence of pH, \hat{I}^2 -Cyclodextrin, and Metal Ions on the Solubility and Stability of the Medicinally Competent Isoxazole Derivative of Curcumin: A Photophysical Study. ACS Applied Bio Materials, 2021, 4, 8407-8423.	4.6	6
9	Solubility and stability enhancement of curcumin in Soluplus $\langle \sup \rangle \hat{A}^{\otimes} \langle \sup \rangle$ polymeric micelles: a spectroscopic study. Journal of Dispersion Science and Technology, 2020, 41, 523-536.	2.4	25
10	The Role of Imidazolium-Based Surface-Active Ionic Liquid to Restrain the Excited-State Intramolecular H-Atom Transfer Dynamics of Medicinal Pigment Curcumin: A Theoretical and Experimental Approach. ACS Omega, 2020, 5, 25582-25592.	3. 5	17
11	Magnetic core–shell dendritic mesoporous silica nanospheres anchored with diamine as an efficient and recyclable base catalyst. New Journal of Chemistry, 2020, 44, 21152-21166.	2.8	6
12	Synthesis of dendritic fibrous nanosilica over a cubic core (cSiO2@DFNS) with catalytically efficient silver nanoparticles for reduction of nitroarenes and degradation of organic dyes. RSC Advances, 2020, 10, 8140-8151.	3.6	11
13	Amineâ€Terminated Ionic Liquid Modified Magnetic Graphene Oxide (MGOâ€ILâ€NH ₂): A Highly Efficient and Reusable Nanocatalyst for the Synthesis of 3â€Amino Alkylated Indoles. ChemistrySelect, 2020, 5, 4337-4346.	1.5	19
14	Development of Amine Functionalized Wrinkled Silica Nanospheres and Their Application as Efficient and Recyclable Solid Base Catalyst. Catalysis Letters, 2018, 148, 194-204.	2.6	19
15	Nitrolotriacetic acid assisted one step synthesis of highly stable silver nanoparticles in aqueous medium: Investigation of catalytic activity. Materials Letters, 2017, 209, 207-211.	2.6	6
16	An imidazolium based ionic liquid supported on Fe ₃ O ₄ @SiO ₂ nanoparticles as an efficient heterogeneous catalyst for N-formylation of amines. New Journal of Chemistry, 2017, 41, 9291-9298.	2.8	60
17	Heterogenization of amine-functionalized ionic liquids using graphene oxide as a support material: a highly efficient catalyst for the synthesis of 3-substituted indoles <i>via</i> Yonemitsu-type reaction. New Journal of Chemistry, 2017, 41, 15545-15554.	2.8	28
18	Synthesis of acrylate guar-gum for delivery of bio-active molecules. Bulletin of Materials Science, 2015, 38, 1025-1032.	1.7	29

#	Article	IF	CITATIONS
19	pHâ€dependent immobilization of urease on glutathioneâ€capped gold nanoparticles. Journal of Biomedical Materials Research - Part A, 2015, 103, 1771-1783.	4.0	12
20	Efficient and reusable ionic liquid stabilized magnetic cobalt nanoparticles as catalysts for aza- and thia-Michael reactions. Inorganic Chemistry Communication, 2015, 53, 92-96.	3.9	21
21	Environmentally benign synthesis of positively charged, ultra-low sized colloidal gold in universal solvent. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 025017.	1.5	12
22	pH dependent immobilization of Urease on glutathione capped gold nanoparticles. Journal of Biomedical Materials Research - Part A, 2014, 103, n/a-n/a.	4.0	1
23	Synthesis of Thermoresponsive Polymers for Drug Delivery. Methods in Molecular Biology, 2014, 1141, 77-101.	0.9	9
24	Synthesis of a Smart Nanovehicle for Targeting Liver. Methods in Molecular Biology, 2014, 1141, 211-232.	0.9	0
25	Synthesis of a Smart Gold Nanoâ€vehicle for Liver Specific Drug Delivery. AAPS PharmSciTech, 2013, 14, 1219-1226.	3.3	14
26	Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 025009.	1.5	33
27	Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Advances, 2013, 3, 5015.	3.6	91
28	Chemoselective acetylation of amines and thiols using monodispersed Ni-nanoparticles. Green Chemistry Letters and Reviews, 2013, 6, 183-188.	4.7	21
29	Aldol condensation in PEG-400 catalyzed by recyclable < scp > l < /scp > -proline supported on nano gold surface. RSC Advances, 2013, 3, 603-607.	3.6	17
30	Synthesis and characterization of thermoresponsive copolymers for drug delivery. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2015-2026.	4.0	16
31	Copper nanoparticulates in Guar-gum: a recyclable catalytic system for the Huisgen [3 + 2]-cycloaddition of azides and alkynes without additives under ambient conditions. Green Chemistry, 2012, 14, 1298.	9.0	86
32	Coastal water pollution in two rivers of the Bengal delta. Geochemistry International, 2012, 50, 860-868.	0.7	3
33	Using Hydrophilic Ionic Liquid, [bmim]BF4 – Ethylene Glycol System as a Novel Media for the Rapid Synthesis of Copper Nanoparticles. PLoS ONE, 2012, 7, e29131.	2.5	29
34	Biginelli Reaction Catalyzed by Copper Nanoparticles. PLoS ONE, 2012, 7, e43078.	2.5	29
35	Recyclable nanoparticulate copper mediated synthesis of naphthoxazinones in PEG-400: a green approach. Tetrahedron Letters, 2011, 52, 4835-4839.	1.4	39
36	Cu Nanoparticles in PEG: A New Recyclable Catalytic System for ⟨i>N⟨/i>â€Arylation of Amines with Aryl Halides. ChemCatChem, 2010, 2, 1312-1317.	3.7	39

#	Article	IF	Citations
37	Molecular iodine in [bmim] [BF4]: a highly efficient green catalytic system for one-pot synthesis of 1,3-oxathiolan-5-one. Tetrahedron Letters, 2010, 51, 6108-6110.	1.4	35
38	Knoevenagel condensation catalyzed by chemo-selective Ni-nanoparticles in neutral medium. Catalysis Communications, 2010, 11, 679-683.	3.3	32
39	Novel one-pot Cu-nanoparticles-catalyzed Mannich reaction. Tetrahedron Letters, 2009, 50, 1355-1358.	1.4	82
40	A novel method for the synthesis of \hat{l}^2 -enaminones using Cu-nanoparticles as catalyst. Catalysis Communications, 2009, 10, 1514-1517.	3.3	49
41	Selective Protection of Carbonyl Compounds over Nano-sized Nickel Catalysts. Catalysis Letters, 2008, 122, 98-105.	2.6	18
42	Calcium Phosphate—DNA Nanocomposites: Morphological Studies and Their Bile Duct Infusion for Liverâ€Directed Gene Therapy. International Journal of Applied Ceramic Technology, 2008, 5, 1-10.	2.1	12
43	Ni-nanoparticles: An efficient catalyst for the synthesis of quinoxalines. Catalysis Communications, 2008, 9, 778-784.	3.3	97
44	Nano-sized copper as an efficient catalyst for one pot three component synthesis of thiazolidine-2,4-dione derivatives. Catalysis Communications, 2008, 10, 17-22.	3.3	34
45	The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chemistry, 2007, 9, 742.	9.0	182
46	Cu-nanoparticle catalyzed O-arylation of phenols with aryl halides via Ullmann coupling. Tetrahedron Letters, 2007, 48, 8883-8887.	1.4	118
47	Ni-nanoparticles: A mild chemo-selective catalyst for synthesis of thioethers. Applied Catalysis A: General, 2007, 317, 210-215.	4.3	48
48	Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A, 2007, 269, 35-40.	4.8	126
49	A facile one-pot synthesis of thioethers using heteropoly acids. Journal of Molecular Catalysis A, 2007, 276, 95-101.	4.8	22
50	Ni-nanoparticles: an efficient green catalyst for chemoselective reduction of aldehydes. Tetrahedron Letters, 2006, 47, 4161-4165.	1.4	61
51	Cu-Nanoparticles: efficient catalysts for the oxidative cyclization of Schiffs' bases. Tetrahedron Letters, 2006, 47, 8049-8053.	1.4	95
52	Cu-nanoparticles: a chemoselective catalyst for the aza-Michael reactions of N-alkyl- and N-arylpiperazines with acrylonitrile. Tetrahedron Letters, 2005, 46, 5229-5232.	1.4	52
53	Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. International Journal of Pharmaceutics, 2003, 250, 25-33.	5.2	283
54	Experimental and Theoretical Background to Study Materials. , 0, , 453-466.		O