Bo Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5519021/publications.pdf

Version: 2024-02-01

102	5,779	39	74
papers	citations	h-index	g-index
102	102	102	6329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. Journal of Colloid and Interface Science, 2022, 611, 706-717.	9.4	43
2	Reusable Cu2-xS-modified masks with infrared lamp-driven antibacterial and antiviral activity for real-time personal protection. Chemical Engineering Journal, 2022, 441, 136043.	12.7	13
3	One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS Applied Materials & Electroactive Cell Culture. ACS Applied Materials & Electroactive Cell Culture. ACS Applied Materials & Electroactive Cell Culture.	8.0	17
4	Watermelon Fleshâ€Derived Carbon Aerogel with Hierarchical Porous Structure for Interfacial Solar Steam Generation. Solar Rrl, 2022, 6, .	5.8	12
5	Synthesis and characterization of poly(hexamethylene terephthalate/hexamethylene oxamide) alternating copolyamide (altâ€PA6T /62). Journal of Applied Polymer Science, 2021, 138, 49773.	2.6	9
6	A trade-off between antifouling and the electrochemical stabilities of PEDOTs. Journal of Materials Chemistry B, 2021, 9, 2717-2726.	5.8	7
7	Transparent Conductive Silk Film with a PEDOT–OH Nano Layer as an Electroactive Cell Interface. ACS Biomaterials Science and Engineering, 2021, 7, 1202-1215.	5 . 2	8
8	PEDOT-hydroxypropyl- \hat{l}^2 -cyclodextrin Inclusion Complex as Additive for Epoxy Coating with Enhanced Anticorrosion Performance. International Journal of Electrochemical Science, 2021, 16, 210443.	1.3	2
9	Electrochemical Stability of Poly(3,4-Ethylenedioxythiophene) Derivatives Under Cell Culture Conditions. Journal of Physics: Conference Series, 2021, 1885, 032004.	0.4	1
10	Hierarchical Photothermal Fabrics with Low Evaporation Enthalpy as Heliotropic Evaporators for Efficient, Continuous, Salt-Free Desalination. ACS Nano, 2021, 15, 13007-13018.	14.6	191
11	Evaluation and selection of potent fluorescent immunosensors by combining fluorescent peptide and nanobodies displayed on yeast surface. Scientific Reports, 2021, 11, 22590.	3. 3	4
12	Tunable Protein/Cell Binding and Interaction with Neurite Outgrowth of Low-Impedance Zwitterionic PEDOTs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12362-12372.	8.0	16
13	Flexible and Reusable Non-woven Fabric Photodetector Based on Polypyrrole/Crystal Violate Lactone for NIR Light Detection and Writing. Advanced Fiber Materials, 2020, 2, 150-160.	16.1	22
14	Continuously Producing Watersteam and Concentrated Brine from Seawater by Hanging Photothermal Fabrics under Sunlight. Advanced Functional Materials, 2019, 29, 1905485.	14.9	178
15	Solution-Processed MoO _{<i>x</i>} Hole-Transport Layer with F4-TCNQ Modification for Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 5862-5870.	5.1	35
16	UV/NIR-Light-Triggered Rapid and Reversible Color Switching for Rewritable Smart Fabrics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13370-13379.	8.0	33
17	Graphene trapped silk scaffolds integrate high conductivity and stability. Carbon, 2019, 148, 16-27.	10.3	42
18	Construction of Ag/AgCl-CN heterojunctions with enhanced photocatalytic activities for degrading contaminants in wastewater. Journal of Colloid and Interface Science, 2019, 543, 25-33.	9.4	31

#	Article	IF	Citations
19	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	12.2	88
20	Molecularly engineered metal-based bioactive soft materials – Neuroactive magnesium ion/polymer hybrids. Acta Biomaterialia, 2019, 85, 310-319.	8.3	32
21	A general strategy of 3D printing thermosets for diverse applications. Materials Horizons, 2019, 6, 394-404.	12.2	89
22	Preparation, analysis, and isothermal crystallization behavior of poly[1,3â€bis(aminomethyl)cyclohexamethylene oxamide]. Journal of Applied Polymer Science, 2018, 135, 46345.	2.6	2
23	Preparation and characterization of poly(2â€methylâ€1,5â€pentamethylene oxamide) (PM52) polymer. Polymers for Advanced Technologies, 2018, 29, 1613-1619.	3.2	2
24	Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials, 2018, 161, 279-291.	11.4	113
25	Dynamic Poly(3,4â€ethylenedioxythiophene)s Integrate Low Impedance with Redoxâ€6witchable Biofunction. Advanced Functional Materials, 2018, 28, 1703890.	14.9	27
26	Synthesis and properties of bioâ€based poly(pentamethylene oxamide). Polymer Engineering and Science, 2018, 58, 659-664.	3.1	10
27	Bio-based poly(pentamethylene oxamide) synthesized by spray/solid-state polycondensation. Polymer Bulletin, 2018, 75, 121-134.	3.3	9
28	Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water. Journal of Hazardous Materials, 2018, 344, 1188-1197.	12.4	81
29	Self-Extinguishing Resin Transfer Molding Composites Using Non-Fire-Retardant Epoxy Resin. Materials, 2018, 11, 2554.	2.9	7
30	Wearable Electronics: A Single Integrated 3D-Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics (Adv. Funct. Mater. 46/2018). Advanced Functional Materials, 2018, 28, 1870331.	14.9	2
31	Electrochemical Assembling of Functionalized PEDOT Thin Films with Excellent Electroactivity and Superhydrophobicity. IOP Conference Series: Materials Science and Engineering, 2018, 436, 012021.	0.6	2
32	All-Organic Conductive Biomaterial as an Electroactive Cell Interface. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35547-35556.	8.0	16
33	A Single Integrated 3Dâ€Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1805108.	14.9	126
34	Synthesis and characterization of poly (1,6â€hexamethylene oxamideâ€coâ€mâ€xylene oxamide) copolymers. Polymers for Advanced Technologies, 2018, 29, 2943-2951.	3.2	4
35	Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater. Journal of Colloid and Interface Science, 2018, 532, 798-807.	9.4	85
36	Synthesis of NiTiO ₃ â€"Bi ₂ MoO ₆ coreâ€"shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. New Journal of Chemistry, 2018, 42, 411-419.	2.8	24

#	Article	IF	CITATIONS
37	Effect of a polyetheramine additive on the melt-flowability of poly(butylene terephthalate). Polymer Testing, 2017, 61, 191-196.	4.8	3
38	Nanoscale analysis of functionalized polythiophene surfaces: the effects of electropolymerization methods and thermal treatment. RSC Advances, 2014, 4, 62666-62672.	3.6	3
39	3D Bioelectronic Interface: Capturing Circulating Tumor Cells onto Conducting Polymerâ€Based Micro/Nanorod Arrays with Chemical and Topographical Control. Small, 2014, 10, 3012-3017.	10.0	61
40	Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nature Communications, 2014, 5, 4523.	12.8	136
41	Nanoscale Analysis of a Functionalized Polythiophene Surface by Adhesion Mapping. Analytical Chemistry, 2014, 86, 6865-6871.	6.5	6
42	Molecular or Nanoscale Structures? The Deciding Factor of Surface Properties on Functionalized Poly(3,4â€ethylenedioxythiophene) Nanorod Arrays. Advanced Functional Materials, 2013, 23, 3212-3219.	14.9	67
43	Controlled Protein Absorption and Cell Adhesion on Polymer-Brush-Grafted Poly(3,4-ethylenedioxythiophene) Films. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4536-4543.	8.0	72
44	Polydioxythiophene Nanodots, Nonowires, Nano-Networks, and Tubular Structures: The Effect of Functional Groups and Temperature in Template-Free Electropolymerization. ACS Nano, 2012, 6, 3018-3026.	14.6	133
45	Tunable, dynamic and electrically stimulated lectin–carbohydrate recognition on a glycan-grafted conjugated polymer. Chemical Communications, 2012, 48, 6942.	4.1	26
46	Electropolymerized Conjugated Polyelectrolytes with Tunable Work Function and Hydrophobicity as an Anode Buffer in Organic Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3396-3404.	8.0	16
47	Oligoethylene-Glycol-Functionalized Polyoxythiophenes for Cell Engineering: Syntheses, Characterizations, and Cell Compatibilities. ACS Applied Materials & Samp; Interfaces, 2012, 4, 680-686.	8.0	55
48	Facile Syntheses of Dioxythiophene-Based Conjugated Polymers by Direct C–H Arylation. Macromolecules, 2012, 45, 7783-7790.	4.8	75
49	Critical role of the conformation of comonomer units in isomorphic crystallization of poly(hexamethylene adipate-co-butylene adipate) forming Poly(hexamethylene adipate) type crystal. Polymer, 2011, 52, 5204-5211.	3.8	12
50	Functionalized Conducting Polymer Nanoâ€Networks from Controlled Oxidation Polymerization toward Cell Engineering. Advanced Engineering Materials, 2011, 13, B423.	3.5	8
51	Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing: The Synergistic Effect of Capture Agents and Nanostructures. Advanced Materials, 2011, 23, 4788-4792.	21.0	164
52	Isomorphic crystallization of aliphatic copolyesters derived from 1,6-hexanediol: Effect of the chemical structure of comonomer units on the extent of cocrystallization. Polymer, 2011, 52, 2667-2676.	3.8	41
53	Fractionated crystallization, polymorphic crystalline structure, and spherulite morphology of poly(butylene adipate) in its miscible blend with poly(butylene succinate). Polymer, 2011, 52, 3460-3468.	3.8	83
54	Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. Journal of Applied Polymer Science, 2010, 115, 3559-3567.	2.6	79

#	Article	IF	CITATIONS
55	Fractionated crystallization and selfâ€nucleation behavior of poly(ethylene oxide) in its miscible blends with poly(3â€hydroxybutyrate). Journal of Applied Polymer Science, 2010, 117, 3013-3022.	2.6	11
56	Conducting polymer nanobiointerfaces for biosensing and cell engineering. , 2010, , .		0
57	Crystalline Phase of Isomorphic Poly(hexamethylene sebacate- <i>co</i> hexamethylene adipate) Copolyester: Effects of Comonomer Composition and Crystallization Temperature. Macromolecules, 2010, 43, 2925-2932.	4.8	40
58	Isomorphic Crystallization of Poly(hexamethylene adipate- <i>co</i> butylene adipate): Regulating Crystal Modification of Polymorphic Polyester from Internal Crystalline Lattice. Macromolecules, 2010, 43, 6429-6437.	4.8	48
59	Polymorphic Crystallization and Phase Transition of Poly(butylene adipate) in Its Miscible Crystalline/Crystalline Blend with Poly(vinylidene fluoride). Macromolecules, 2010, 43, 8610-8618.	4.8	95
60	Effect of Comonomerâ€Unit Compositional Distribution on Thermal and Crystallization Behavior of Bacterial Poly[(3â€hydroxybutyrate)â€ <i>co</i> â€(3â€mercaptopropionate)]. Macromolecular Bioscience, 2009, 9, 702-712.	4.1	6
61	Crystallization behavior and mechanical properties of poly(ε aprolactone)/cyclodextrin biodegradable composites. Journal of Applied Polymer Science, 2009, 112, 2351-2357.	2.6	14
62	Temperatureâ€dependent polymorphic crystalline structure and melting behavior of poly(butylene) Tj ETQq0 0 0 r Physics, 2009, 47, 1997-2007.	gBT /Over 2.1	lock 10 Tf 5 38
63	Polymorphic crystallization of fractionated microbial medium-chain-length polyhydroxyalkanoates. Polymer, 2009, 50, 4378-4388.	3.8	32
64	Blending Effects on Polymorphic Crystallization of Poly(<scp>l</scp> -lactide). Macromolecules, 2009, 42, 3374-3380.	4.8	142
65	Poly(<scp>L</scp> â€lactide)/layered double hydroxides nanocomposites: Preparation and crystallization behavior. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2222-2233.	2.1	43
66	Fullerene Endâ€Capped Biodegradable Poly(⟨i⟩ε⟨/i⟩â€caprolactone). Macromolecular Chemistry and Physics, 2008, 209, 104-111.	2.2	18
67	Polyhedral Oligomeric Silsesquioxane―and Fullereneâ€Endâ€Capped Poly(<i>Îμ</i> â€caprolactone). Macromolecular Chemistry and Physics, 2008, 209, 1191-1197.	2.2	19
68	Interactions between an Anticancer Drug and Polymeric Micelles Based on Biodegradable Polyesters. Macromolecular Bioscience, 2008, 8, 1116-1125.	4.1	56
69	Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(<scp>L</scp> â€lactide). Journal of Applied Polymer Science, 2008, 107, 54-62.	2.6	204
70	Kenaf fiber/poly(εâ€εaprolactone) biocomposite with enhanced crystallization rate and mechanical properties. Journal of Applied Polymer Science, 2008, 107, 3512-3519.	2.6	30
71	Synthesis and characterization of fullerene grafted poly(εâ€caprolactone). Journal of Applied Polymer Science, 2008, 107, 4029-4035.	2.6	7
72	Crystalline-Structure-Dependent Enzymatic Degradation of Polymorphic Poly(3-hydroxypropionate). Biomacromolecules, 2008, 9, 1221-1228.	5.4	10

#	Article	IF	CITATIONS
73	Polymorphic Packing and Dynamics of Biodegradable Poly(3-hydroxypropionate). Journal of Physical Chemistry B, 2008, 112, 9684-9692.	2.6	10
74	Roles of Physical Aging on Crystallization Kinetics and Induction Period of Poly(<scp>l</scp> -lactide). Macromolecules, 2008, 41, 8011-8019.	4.8	105
75	Polymorphic Transition in Disordered Poly(<scp>l</scp> -lactide) Crystals Induced by Annealing at Elevated Temperatures. Macromolecules, 2008, 41, 4296-4304.	4.8	305
76	Conformational and microstructural characteristics of poly(L-lactide) during glass transition and physical aging. Journal of Chemical Physics, 2008, 129, 184902.	3.0	63
77	3P124 Analysis of Hydrogen Bonds in the Glassy States of Trehalose and Neotrehalose Using Molecular Dynamics Simulation and FT-IR Spectroscopy(Water, hydration, and elctrolytes,Poster) Tj ETQq1 1 0.7	′84 6.1 4 rg	BT (Overlock
78	Enthalpy Relaxation and Embrittlement of Poly(<scp>l</scp> -lactide) during Physical Aging. Macromolecules, 2007, 40, 9664-9671.	4.8	222
79	Natural DNA Mixed with Trehalose Persists in B-Form Double-Stranding Even in the Dry State. Journal of Physical Chemistry B, 2007, 111, 5542-5544.	2.6	25
80	Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber. Journal of Applied Polymer Science, 2007, 105, 1511-1520.	2.6	109
81	Miscibility and intermolecular hydrogenâ€bonding interactions in poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyhexanoate)/poly(4â€vinyl phenol) binary blends. Journal of Applied Polymer Science, 2007, 106, 2025-2030.	2.6	12
82	Mechanical Properties of Comonomer-Compositionally Fractionated Poly[(3-hydroxybutyrate)-co-(3-mercaptopropionate)] with Low 3-Mercaptopropionate Unit Content. Macromolecular Bioscience, 2007, 7, 810-819.	4.1	12
83	Polymorphous Crystallization and Multiple Melting Behavior of Poly(<scp> </scp> -lactide): Molecular Weight Dependence. Macromolecules, 2007, 40, 6898-6905.	4.8	591
84	A New Crystal Form Favored in Low Molecular Weight Biodegradable Poly(3-hydroxypropionate). Macromolecules, 2006, 39, 194-203.	4.8	17
85	Nucleation and Crystallization Behavior of Poly(butylene succinate) Induced by Its α-Cyclodextrin Inclusion Complex: Effect of Stoichiometry. Macromolecules, 2006, 39, 2427-2428.	4.8	49
86	Mechanical Properties of Blends of Double-Fullerene End-Capped Poly(ethylene oxide) and Poly(L-lactic acid). Macromolecular Chemistry and Physics, 2006, 207, 746-754.	2.2	9
87	Enforcing Effect of Double-Fullerene End-Capped Poly(ethylene oxide) on Mechanical Properties of Poly(L-lactic acid). Macromolecular Rapid Communications, 2006, 27, 109-113.	3.9	17
88	Enzymatic Hydrolysis of Thioester Linkages in Bacterial Poly(3-hydroxybutyrate) Depolymerase Isolated from Ralstonia pickettii T1. Polymer Journal, 2005, 37, 711-715.	2.7	7
89	A New Crystal Form, Polymorphism, and Multi-Morphology in Biodegradable Poly(3-hydroxypropionate). Macromolecular Rapid Communications, 2005, 26, 581-585.	3.9	14
90	Crystallization of poly(butylene adipate) in the presence of nucleating agents. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2340-2351.	2.1	44

#	Article	IF	CITATIONS
91	Effect of aging on fractional crystallization of poly(ethylene oxide) component in poly(ethylene) Tj ETQq1 1 0.784 2665-2676.	314 rgBT 2.1	/Overlock 1 26
92	Nucleation Mechanism of α-Cyclodextrin-Enhanced Crystallization of Some Semicrystalline Aliphatic Polymers. Macromolecules, 2005, 38, 7736-7744.	4.8	93
93	Polymorphic Crystallization and Meltingâ''Recrystallization Behavior of Poly(3-hydroxypropionate). Macromolecules, 2005, 38, 6455-6465.	4.8	26
94	Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. Journal of Applied Polymer Science, 2004, 91, 3565-3573.	2.6	47
95	Hydrogen bonds in polymer blends. Progress in Polymer Science, 2004, 29, 1021-1051.	24.7	433
96	Partial Phase Segregation in Strongly Hydrogen-Bonded and Miscible Blends. Macromolecules, 2004, 37, 3257-3266.	4.8	34
97	Nanoscale-Confined and Fractional Crystallization of Poly(ethylene oxide) in the Interlamellar Region of Poly(butylene succinate). Macromolecules, 2004, 37, 3337-3345.	4.8	107
98	Effects of Crystallization Condition of Poly(butylene succinate) Component on the Crystallization of Poly(ethylene oxide) Component in Their Miscible Blends. Macromolecules, 2004, 37, 8050-8056.	4.8	63
99	Hydrogen-Bonding Interaction and Crystalline Morphology in the Binary Blends of Poly(É)-caprolactone) and Polyphenol Catechin. Macromolecular Bioscience, 2003, 3, 684-693.	4.1	44
100	Studies on Binary Blends of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Natural Polyphenol Catechin: Specific Interactions and Thermal Properties. Macromolecular Bioscience, 2003, 3, 258-267.	4.1	12
101	Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin. Green Chemistry, 2003, 5, 580-586.	9.0	22
102	Thermal and Infrared Spectroscopic Studies on Hydrogen-Bonding Interaction between Poly(3-hydroxybutyrate) and Catechin. Polymer Journal, 2003, 35, 384-392.	2.7	25