
Ferenc Krausz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attosecond physics. Reviews of Modern Physics, 2009, 81, 163-234.	45.6	4,682
2	Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics, 2000, 72, 545-591.	45.6	2,724
3	Attosecond metrology. Nature, 2001, 414, 509-513.	27.8	2,531
4	Attosecond control of electronic processes by intense light fields. Nature, 2003, 421, 611-615.	27.8	1,493
5	Time-resolved atomic inner-shell spectroscopy. Nature, 2002, 419, 803-807.	27.8	1,315
6	Atomic transient recorder. Nature, 2004, 427, 817-821.	27.8	1,271
7	Delay in Photoemission. Science, 2010, 328, 1658-1662.	12.6	932
8	Nonlinear Optical Pulse Propagation in the Single-Cycle Regime. Physical Review Letters, 1997, 78, 3282-3285.	7.8	794
9	Direct Measurement of Light Waves. Science, 2004, 305, 1267-1269.	12.6	596
10	Optical-field-induced current in dielectrics. Nature, 2013, 493, 70-74.	27.8	592
11	Controlling dielectrics with the electric field of light. Nature, 2013, 493, 75-78.	27.8	489
12	Controlling the Phase Evolution of Few-Cycle Light Pulses. Physical Review Letters, 2000, 85, 740-743.	7.8	439
13	Attosecond metrology: from electron capture to future signal processing. Nature Photonics, 2014, 8, 205-213.	31.4	384
14	Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 2016, 530, 66-70.	27.8	346
15	Attosecond Control and Measurement: Lightwave Electronics. Science, 2007, 317, 769-775.	12.6	343
16	Third-generation femtosecond technology. Optica, 2014, 1, 45.	9.3	302
17	Route to phase control of ultrashort light pulses. Optics Letters, 1996, 21, 2008.	3.3	278
18	Attosecond physics at the nanoscale. Reports on Progress in Physics, 2017, 80, 054401.	20.1	274

Ferenc Krausz

#	Article	IF	CITATIONS
19	All-optical control and metrology of electron pulses. Science, 2016, 352, 429-433.	12.6	264
20	High-power sub-two-cycle mid-infrared pulses at 100â€MHz repetition rate. Nature Photonics, 2015, 9, 721-724.	31.4	248
21	Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Physics, 2011, 7, 656-662.	16.7	210
22	1  kW, 200  mJ picosecond thin-disk laser system. Optics Letters, 2017, 42, 1381.	3.3	195
23	Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature, 2016, 534, 86-90.	27.8	187
24	Phase-controlled amplification of few-cycle laser pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 972-989.	2.9	178
25	Field-resolved infrared spectroscopy of biological systems. Nature, 2020, 577, 52-59.	27.8	170
26	Single-electron pulses for ultrafast diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19714-19719.	7.1	141
27	High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Optics Letters, 2011, 36, 4746.	3.3	138
28	Laser streaking of free electrons at 25ÂkeV. Nature Photonics, 2014, 8, 52-57.	31.4	121
29	Electro-optic sampling of near-infrared waveforms. Nature Photonics, 2016, 10, 159-162.	31.4	108
30	Sub-fs electron pulses for ultrafast electron diffraction. New Journal of Physics, 2006, 8, 272-272.	2.9	97
31	A laser-driven nanosecond proton source for radiobiological studies. Applied Physics Letters, 2012, 101, .	3.3	87
32	Multi-watt, multi-octave, mid-infrared femtosecond source. Science Advances, 2018, 4, eaaq1526.	10.3	86
33	Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cmâ^'1. Light: Science and Applications, 2018, 7, 17180-17180.	16.6	85
34	Attosecond optoelectronic field measurement in solids. Nature Communications, 2020, 11, 430.	12.8	81
35	Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nature Physics, 2017, 13, 766-770.	16.7	74
36	Sub-phonon-period compression of electron pulses for atomic diffraction. Nature Communications, 2015, 6, 8723.	12.8	73

FERENC KRAUSZ

#	Article	IF	CITATIONS
37	Attosecond nanoscale near-field sampling. Nature Communications, 2016, 7, 11717.	12.8	67
38	Compression of single-electron pulses with a microwave cavity. New Journal of Physics, 2012, 14, 073055.	2.9	66
39	Femtosecond single-electron diffraction. Structural Dynamics, 2014, 1, 034303.	2.3	60
40	The birth of attosecond physics and its coming of age. Physica Scripta, 2016, 91, 063011.	2.5	54
41	High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier. Optics Letters, 2016, 41, 1126.	3.3	54
42	Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter. Scientific Reports, 2015, 5, 14581.	3.3	38
43	Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator. Optics Express, 2019, 27, 24445.	3.4	38
44	A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities. Light: Science and Applications, 2014, 3, e211-e211.	16.6	37
45	Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring. Nature Communications, 2021, 12, 1511.	12.8	35
46	Near-PHz-bandwidth, phase-stable continua generated from a Yb:YAG thin-disk amplifier. Optics Express, 2016, 24, 24337.	3.4	34
47	Electro-optic characterization of synthesized infrared-visible light fields. Nature Communications, 2022, 13, 1111.	12.8	24
48	Single-cycle infrared waveform control. Nature Photonics, 2022, 16, 512-518.	31.4	23
49	Multi-octave spanning, Watt-level ultrafast mid-infrared source. JPhys Photonics, 2019, 1, 044006.	4.6	21
50	Capturing atomic-scale carrier dynamics with electrons. Chemical Physics Letters, 2017, 683, 57-61.	2.6	19
51	Multi-octave, CEP-stable source for high-energy field synthesis. Science Advances, 2020, 6, eaax3408.	10.3	19
52	The speed limit of optoelectronics. Nature Communications, 2022, 13, 1620.	12.8	18
53	Reconstruction of Nanoscale Near Fields by Attosecond Streaking. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 77-87.	2.9	16
54	Onset of charge interaction in strong-field photoemission from nanometric needle tips. Nanophotonics, 2021, 10, 3769-3775.	6.0	14

Ferenc Krausz

#	Article	IF	CITATIONS
55	Molecular Origin of Bloodâ€Based Infrared Spectroscopic Fingerprints**. Angewandte Chemie - International Edition, 2021, 60, 17060-17069.	13.8	13
56	Distributed Kerr Lens Mode-Locked Yb:YAG Thin-Disk Oscillator. Ultrafast Science, 2022, 2022, .	11.2	13
57	Broadband dispersive Ge/YbF3 mirrors for mid-infrared spectral range. Optics Letters, 2019, 44, 5210.	3.3	9
58	Quantum-Efficiency and Bandwidth Optimized Electro-Optic Sampling. , 2019, , .		5
59	Attosecond-Precision Dual-Oscillator Infrared Field-Resolved Spectroscopy Employing Electro-Optic Delay Tracking. , 2021, , .		4
60	Stack and dump: Peak-power scaling by coherent pulse addition in passive cavities. European Physical Journal: Special Topics, 2015, 224, 2573-2577.	2.6	3
61	Plasma mirror with few-cycle laser pulses. , 0, , .		2
62	From quantum transitions to electronic motions. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	2
63	Ultrakurze Laserpulse – Erzeugung und Anwendung. Laser Technik Journal, 2005, 2, 27-33.	0.2	1
64	Carrier envelope phase noise in stabilized amplifier systems. , 0, , .		1
65	Field-Resolved Infrared Spectroscopy of Biological Samples. , 2019, , .		1
66	Field-Resolved Infrared Spectroscopy of Human Blood to Tackle Lung, Prostate and Breast Cancer Detection. , 2019, , .		1
67	Milliwatt-Level Multi-Octave Mid-Infrared Generation by a Diode-Pumped Cr:ZnS Oscillator. , 2021, , .		1
68	Carrier-envelope phase-stabilized high-power amplifier system. , 0, , .		0
69	High harmonic generation at high repetition rates. , 0, , .		Ο
70	Enhancement resonators for frequency combs. , 2006, , .		0
71	Development of a multi-terawatt few cycle optical parametric chirped pulse amplifier. , 2006, , .		0
72	High brightness laser diode array at 940 nm for Yb:YAG pumping. , 2007, , .		0

5

FERENC KRAUSZ

#	Article	IF	CITATIONS
73	Moderator and Short Introduction to the Walther Memorial Plenary. , 2007, , .		0
74	Moderator and short introduction. , 2007, , .		0
75	Multiterawatt three-cycle optical parametric chirped pulse amplifier. , 2007, , .		0
76	Multiterawatt Three-Cycle Optical Parametric Chirped Pulse Amplifier. , 2007, , .		0
77	Long-term Phase Stabilization of Intense Few-Cycle Pulses. , 2007, , .		0
78	High-Energy, High-Repetition Rate Ti:sapphire Chirped Pulse Oscillators. , 2007, , .		0
79	Stronger seed for a multiterawatt few-cycle pulse OPCPA. , 2007, , .		0
80	Controlled electron acceleration from dielectric nanospheres in intense few-cycle laser fields. , 2011, , ,		0
81	Schnelles Schalten mit Licht. Physik in Unserer Zeit, 2016, 47, 142-148.	0.0	0
82	Towards attosecond XUV-pump XUV-probe measurements in the 100-eV region. , 2017, , .		0
83	Towards multi-mJ, OPCPA-based field synthesizer. , 2017, , .		0
84	From Quantum Transitions to Electronic Motions. , 2018, , 59-70.		0
85	On the Role of the Phase in Field-Resolved Spectroscopy of Molecular Vibrations. , 2019, , .		0
86	Achromatic Interferometric Subtraction of Optical Fields. , 2019, , .		0
87	High-Power 50-MHz Source of Waveform-Stable, Multi-Octave Infrared Pulses. , 2019, , .		0
88	High-Power Single-Cycle Mid-Infrared Transients Generated via Intra-Pulse Difference-Frequency Mixing at 2 μm. , 2019, , .		0
89	Molecular Origin of Bloodâ€Based Infrared Spectroscopic Fingerprints**. Angewandte Chemie, 2021, 133, 17197-17206.	2.0	0

90 Innenrücktitelbild: Molecular Origin of Bloodâ€Based Infrared Spectroscopic Fingerprints (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf