Belinda S W Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518445/publications.pdf

Version: 2024-02-01

50 papers 1,608 citations

304743 22 h-index 330143 37 g-index

54 all docs

54 docs citations

54 times ranked 1700 citing authors

#	Article	IF	CITATIONS
1	Ancient whale rhodopsin reconstructs dim-light vision over a major evolutionary transition: Implications for ancestral diving behavior. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
2	Evolution, inactivation and loss of short wavelengthâ€sensitive opsin genes during the diversification of Neotropical cichlids. Molecular Ecology, 2021, 30, 1688-1703.	3.9	12
3	Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nature Medicine, 2021, 27, 1212-1222.	30.7	124
4	Uniform trichromacy in Alouatta caraya and Alouatta seniculus: behavioural and genetic colour vision evaluation. Frontiers in Zoology, 2021, 18, 36.	2.0	4
5	Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes. Molecular Biology and Evolution, 2021, 38, 5225-5240.	8.9	3
6	Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation. Molecular Biology and Evolution, 2021, 38, 2076-2087.	8.9	15
7	Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190179.	4.0	9
8	Corticotropin-Releasing Factor: An Ancient Peptide Family Related to the Secretin Peptide Superfamily. Frontiers in Endocrinology, 2020, 11, 529.	3.5	6
9	Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.	1.8	8
10	To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191182.	2.6	3
11	Screening of Chemical Libraries Using a Yeast Model of Retinal Disease. SLAS Discovery, 2019, 24, 969-977.	2.7	7
12	Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution; International Journal of Organic Evolution, 2019, 73, 1958-1971.	2.3	22
13	Coupling of Human Rhodopsin to a Yeast Signaling Pathway Enables Characterization of Mutations Associated with Retinal Disease. Genetics, 2019, 211, 597-615.	2.9	12
14	Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Molecular Biology and Evolution, 2018, 35, 1376-1389.	8.9	26
15	The role of ecological factors in shaping bat cone opsin evolution. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172835.	2.6	22
16	Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms. Evolution; International Journal of Organic Evolution, 2018, 72, 170-186.	2.3	16
17	Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biology and Evolution, 2018, 10, 2110-2129.	2.5	72
18	Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Molecular Biology and Evolution, 2018, 35, 2422-2434.	8.9	23

#	Article	IF	CITATIONS
19	Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. ELife, $2018, 7, .$	6.0	19
20	A second visual rhodopsin gene, $\langle i \rangle$ rh1-2 $\langle i \rangle$, is expressed in zebrafish photoreceptors and found in other ray-finned fishes. Journal of Experimental Biology, 2017, 220, 294-303.	1.7	29
21	Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162743.	2.6	26
22	Cone-like rhodopsin expressed in the all cone retina of the colubrid pine snake as a potential adaptation to diurnality. Journal of Experimental Biology, 2017, 220, 2418-2425.	1.7	32
23	Evolution of nonspectral rhodopsin function at high altitudes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7385-7390.	7.1	37
24	An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. FEBS Letters, 2017, 591, 1720-1731.	2.8	14
25	Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America. Molecular Biology and Evolution, 2017, 34, 2650-2664.	8.9	39
26	Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Current Opinion in Genetics and Development, 2017, 47, 110-120.	3.3	45
27	Targeted capture of complete coding regions across divergent species. Genome Biology and Evolution, 2017, 9, evx005.	2.5	15
28	A comparative study of rhodopsin function in the great bowerbird (<scp><i>P</i>><iscp><i>ti>P</i>><i>1308-1318.</i></iscp></scp>	7.6	21
29	Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 356-361.	7.1	73
30	Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins. Scientific Reports, 2016, 6, 38425.	3.3	26
31	Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations. Visual Neuroscience, 2016, 33, e002.	1.0	6
32	Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions. Nature Communications, 2016, 7, 12344.	12.8	13
33	Mitochondrial genomes of the South American electric knifefishes (Order Gymnotiformes). Mitochondrial DNA Part B: Resources, 2016, 1, 401-403.	0.4	8
34	Spectral Tuning of Killer Whale (<i>Orcinus orca</i>) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment. Molecular Biology and Evolution, 2016, 33, 323-336.	8.9	47
35	The molecular origin and evolution of dim-light vision in mammals. Evolution; International Journal of Organic Evolution, 2015, 69, 2995-3003.	2.3	30
36	Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion. Biology Letters, 2015, 11, 20150349.	2.3	33

3

#	Article	IF	Citations
37	Ancient insights into uric acid metabolism in primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3657-3658.	7.1	19
38	Spectral tuning in vertebrate short wavelengthâ€sensitive 1 (SWS1) visual pigments: Can wavelength sensitivity be inferred from sequence data?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 529-539.	1.3	60
39	Divergent Positive Selection in Rhodopsin from Lake and Riverine Cichlid Fishes. Molecular Biology and Evolution, 2014, 31, 1149-1165.	8.9	71
40	Encoding Asymmetry of the N-Glycosylation Motif Facilitates Glycoprotein Evolution. PLoS ONE, 2014, 9, e86088.	2.5	15
41	Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots. BMC Evolutionary Biology, 2013, 13, 250.	3.2	26
42	Visual Pigment Molecular Evolution in the Trinidadian Pike Cichlid (Crenicichla frenata): A Less Colorful World for Neotropical Cichlids?. Molecular Biology and Evolution, 2012, 29, 3045-3060.	8.9	48
43	An Improved Likelihood Ratio Test for Detecting Site-Specific Functional Divergence among Clades of Protein-Coding Genes. Molecular Biology and Evolution, 2012, 29, 1297-1300.	8.9	152
44	Functional characterization of the rod visual pigment of the echidna (<i>Tachyglossus aculeatus)</i> , a basal mammal. Visual Neuroscience, 2012, 29, 211-217.	1.0	29
45	The future of codon models in studies of molecular function: ancestral reconstruction and clade models of functional divergence. , 2012, , 145-163.		13
46	A novel rhodopsin-like gene expressed in zebrafish retina. Visual Neuroscience, 2011, 28, 325-335.	1.0	55
47	The p1D4-hrGFP II expression vector: A tool for expressing and purifying visual pigments and other G protein-coupled receptors. Plasmid, 2010, 64, 162-169.	1.4	30
48	Duplicate dmbx1genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development. BMC Developmental Biology, 2010, 10, 100.	2.1	20
49	Molecular Evolution of the $\hat{A}\hat{A}$ Lens Crystallin Superfamily: Evidence for a Retained Ancestral Function in $\hat{A}N$ Crystallins?. Molecular Biology and Evolution, 2009, 26, 1127-1142.	8.9	11
50	Recreating a Functional Ancestral Archosaur Visual Pigment. Molecular Biology and Evolution, 2002, 19, 1483-1489.	8.9	147