Danny J Schnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517932/publications.pdf

Version: 2024-02-01

117625 102487 4,531 67 34 66 citations g-index h-index papers 68 68 68 2549 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring <i>Camelina sativa</i> lipid metabolism regulation by combining gene coâ€expression and <scp>DNA</scp> affinity purification analyses. Plant Journal, 2022, 110, 589-606.	5.7	13
2	Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. Journal of Experimental Botany, 2021, 72, 1059-1072.	4.8	17
3	Increased Cuticle Waxes by Overexpression of WSD1 Improves Osmotic Stress Tolerance in Arabidopsis thaliana and Camelina sativa. International Journal of Molecular Sciences, 2021, 22, 5173.	4.1	19
4	Origins, function, and regulation of the TOC–TIC general protein import machinery of plastids. Journal of Experimental Botany, 2020, 71, 1226-1238.	4.8	52
5	CamRegBase: a gene regulation database for the biofuel crop, <i>Camelina sativa</i> Journal of Biological Databases and Curation, 2020, 2020, .	3.0	7
6	Protein Import Motors in Chloroplasts: On the Role of Chaperones. Plant Cell, 2020, 32, 536-542.	6.6	21
7	The TOC GTPase Receptors: Regulators of the Fidelity, Specificity and Substrate Profiles of the General Protein Import Machinery of Chloroplasts. Protein Journal, 2019, 38, 343-350.	1.6	16
8	Engineering <i>Camelina sativa</i> (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerolâ€3â€phosphate dehydrogenase expression. Plant Biotechnology Journal, 2018, 16, 1034-1045.	8.3	41
9	Exit route evolved into entry path in plants. Nature, 2018, 564, 45-46.	27.8	3
10	Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. Biotechnology for Biofuels, 2018, 11, 335.	6.2	12
11	Molecular Topology of the Transit Peptide during Chloroplast Protein Import. Plant Cell, 2018, 30, 1789-1806.	6.6	26
12	Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus. Plant Physiology, 2017, 173, 1953-1966.	4.8	36
13	The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4868-E4876.	7.1	40
14	The integration of chloroplast protein targeting with plant developmental and stress responses. BMC Biology, 2017, 15, 118.	3.8	33
15	Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. ELife, $2016, 5, .$	6.0	44
16	Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnology for Biofuels, 2016, 9, 136.	6.2	53
17	Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels. PLoS ONE, 2015, 10, e0118285.	2.5	28
18	New Insights into the Mechanism of Chloroplast Protein Import and Its Integration with Protein Quality Control, Organelle Biogenesis and Development. Journal of Molecular Biology, 2015, 427, 1038-1060.	4.2	131

#	Article	IF	CITATIONS
19	Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane. Frontiers in Plant Science, 2014, 5, 269.	3.6	33
20	Targeting of a polytopic membrane protein to the inner envelope membrane of chloroplasts in vivo involves multiple transmembrane segments. Journal of Experimental Botany, 2014, 65, 5257-5265.	4.8	26
21	Lipids Guide the Way: Targeting Proteins to the Chloroplast Outer Envelope Membrane. Developmental Cell, 2014, 30, 493-495.	7.0	0
22	An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3173-3178.	7.1	91
23	Involvement of a Bacterial Microcompartment in the Metabolism of Fucose and Rhamnose by Clostridium phytofermentans. PLoS ONE, 2013, 8, e54337.	2.5	120
24	Substrate binding disrupts dimerization and induces nucleotide exchange of the chloroplast GTPase Toc33. Biochemical Journal, 2011, 436, 313-319.	3.7	25
25	Energetic Manipulation of Chloroplast Protein Import and the Use of Chemical Cross-Linkers to Map Protein–Protein Interactions. Methods in Molecular Biology, 2011, 774, 307-320.	0.9	2
26	The Molecular Basis for Distinct Pathways for Protein Import into <i>Arabidopsis</i> Plant Cell, 2010, 22, 1947-1960.	6.6	78
27	Determinants for Stop-transfer and Post-import Pathways for Protein Targeting to the Chloroplast Inner Envelope Membrane. Journal of Biological Chemistry, 2010, 285, 12948-12960.	3.4	47
28	A Toc159 Import Receptor Mutant, Defective in Hydrolysis of GTP, Supports Preprotein Import into Chloroplasts. Journal of Biological Chemistry, 2009, 284, 8670-8679.	3.4	55
29	The Signal Peptide Peptidase Is Required for Pollen Function in Arabidopsis. Plant Physiology, 2009, 149, 1289-1301.	4.8	24
30	Toc Receptor Dimerization Participates in the Initiation of Membrane Translocation during Protein Import into Chloroplasts. Journal of Biological Chemistry, 2009, 284, 31130-31141.	3.4	29
31	Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Current Opinion in Cell Biology, 2009, 21, 494-500.	5.4	118
32	Arabidopsis Tic40 Expression in Tobacco Chloroplasts Results in Massive Proliferation of the Inner Envelope Membrane and Upregulation of Associated Proteins. Plant Cell, 2008, 20, 3405-3417.	6.6	54
33	The role of GTP binding and hydrolysis at the atToc159 preprotein receptor during protein import into chloroplasts. Journal of Cell Biology, 2008, 183, 87-99.	5.2	32
34	The Toc Machinery of the Protein Import Apparatus of Chloroplasts. The Enzymes, 2007, 25, 415-438.	1.7	2
35	The Function and Diversity of Plastid Protein Import Pathways: A Multilane GTPase Highway into Plastids. Traffic, 2006, 7, 248-257.	2.7	114
36	Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. Journal of Cell Biology, 2006, 175, 249-259.	5.2	78

#	Article	IF	CITATIONS
37	The Plastid Protein THYLAKOID FORMATION1 and the Plasma Membrane G-Protein GPA1 Interact in a Novel Sugar-Signaling Mechanism in Arabidopsis. Plant Cell, 2006, 18, 1226-1238.	6.6	187
38	Arabidopsis Tic110 Is Essential for the Assembly and Function of the Protein Import Machinery of Plastids. Plant Cell, 2005, 17, 1482-1496.	6.6	125
39	Import Pathways of Chloroplast Interior Proteins and the Outer-Membrane Protein OEP14 Converge at Toc75. Plant Cell, 2004, 16, 2078-2088.	6.6	104
40	Members of the Toc159 Import Receptor Family Represent Distinct Pathways for Protein Targeting to Plastids. Molecular Biology of the Cell, 2004, 15, 3379-3392.	2.1	190
41	atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. Journal of Cell Biology, 2004, 165, 323-334.	5.2	148
42	Chloroplast protein import: solve the GTPase riddle for entry. Trends in Cell Biology, 2004, 14, 334-338.	7.9	60
43	Protein Translocons. Cell, 2003, 112, 491-505.	28.9	226
44	The Roles of Toc34 and Toc75 in Targeting the Toc159 Preprotein Receptor to Chloroplasts. Journal of Biological Chemistry, 2003, 278, 44289-44297.	3.4	71
45	atTic110 Functions as a Scaffold for Coordinating the Stromal Events of Protein Import into Chloroplasts. Journal of Biological Chemistry, 2003, 278, 38617-38627.	3.4	112
46	In Vitro Analysis of Chloroplast Protein Import. Current Protocols in Cell Biology, 2003, 17, Unit11.16.	2.3	24
47	The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. Journal of Cell Biology, 2002, 159, 833-843.	5.2	87
48	Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane. Journal of Cell Biology, 2002, 159, 845-854.	5.2	77
49	In Vivo Analysis of the Role of atTic20 in Protein Import into Chloroplasts. Plant Cell, 2002, 14, 641-654.	6.6	138
50	A GTPase gate for protein import into chloroplasts. Nature Structural Biology, 2002, 9, 81-83.	9.7	29
51	Peroxisomal Protein Import. Cell, 2001, 105, 293-296.	28.9	31
52	The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature, 2000, 403, 203-207.	27.8	336
53	Initial Binding of Preproteins Involving the Toc159 Receptor Can Be Bypassed during Protein Import into Chloroplasts. Plant Physiology, 2000, 122, 813-822.	4.8	112
54	The Transit Sequence of Ferredoxin Contains Different Domains for Translocation across the Outer and Inner Membrane of the Chloroplast Envelope. Journal of Biological Chemistry, 2000, 275, 10265-10271.	3.4	35

#	Article	IF	Citations
55	Functions and origins of the chloroplast protein-import machinery. Essays in Biochemistry, 2000, 36, 47-59.	4.7	9
56	Tic22 Is Targeted to the Intermembrane Space of Chloroplasts by a Novel Pathway. Journal of Biological Chemistry, 1999, 274, 25181-25186.	3.4	65
57	Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta, 1999, 208, 107-113.	3.2	107
58	Protein import into chloroplasts. Trends in Cell Biology, 1999, 9, 222-227.	7.9	92
59	Tic20 and Tic22 Are New Components of the Protein Import Apparatus at the Chloroplast Inner Envelope Membrane. Journal of Cell Biology, 1998, 143, 991-1002.	5.2	236
60	Insertion of the 34-kDa Chloroplast Protein Import Component, IAP34, into the Chloroplast Outer Membrane Is Dependent on Its Intrinsic GTP-binding Capacity. Journal of Biological Chemistry, 1997, 272, 6614-6620.	3.4	73
61	Analysis of the Interactions of Preproteins with the Import Machinery over the Course of Protein Import into Chloroplasts. Journal of Cell Biology, 1997, 139, 1677-1685.	5.2	191
62	Protein Translocation at the Envelope and Thylakoid Membranes of Chloroplasts. Journal of Biological Chemistry, 1996, 271, 31009-31012.	3.4	35
63	Shedding light on the chloroplast protein import machinery. Cell, 1995, 83, 521-524.	28.9	59
64	cDNA cloning and in vitro synthesis of the Dolichos biflorus seed lectin. FEBS Journal, 1987, 167, 227-231.	0.2	17
65	Relative toxicity of organic solvents to Aedes aegypti larvae. Journal of Invertebrate Pathology, 1983, 42, 285-287.	3.2	13
66	Toxicity of cyclic peptide antibiotics to larvae of Aedes aegypti. Journal of Invertebrate Pathology, 1983, 42, 407-409.	3.2	12
67	Toxicity of <i>Bacillus thuringiensis</i> var. <i>israelensis</i> Crystals to <i>Aedes aegypti</i> Larvae: Carbonate Reversal. Applied and Environmental Microbiology, 1983, 45, 1691-1693.	3.1	10