
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Penalized mediation models for multivariate data. Genetic Epidemiology, 2022, 46, 32-50.	1.3	2
2	Do research participants share genomic screening results with family members?. Journal of Genetic Counseling, 2022, 31, 447-458.	1.6	12
3	Web-Based Tool (FH Family Share) to Increase Uptake of Cascade Testing for Familial Hypercholesterolemia: Development and Evaluation. JMIR Human Factors, 2022, 9, e32568.	2.0	8
4	Clinical Applications Measuring Arterial Stiffness: An Expert Consensus for the Application of Cardio-Ankle Vascular Index. American Journal of Hypertension, 2022, 35, 441-453.	2.0	12
5	Transgelin: a new gene involved in LDL endocytosis identified by a genome-wide CRISPR-Cas9 screen. Journal of Lipid Research, 2022, 63, 100160.	4.2	10
6	Under-specification as the source of ambiguity and vagueness in narrative phenotype algorithm definitions. BMC Medical Informatics and Decision Making, 2022, 22, 23.	3.0	1
7	Uterine fibroid polygenic risk score (PRS) associates and predicts risk for uterine fibroid. Human Genetics, 2022, 141, 1739-1748.	3.8	4
8	The reckoning: The return of genomic results to 1444 participants across the eMERGE3 Network. Genetics in Medicine, 2022, 24, 1130-1138.	2.4	12
9	Arrhythmia Variant Associations and Reclassifications in the eMERGE-III Sequencing Study. Circulation, 2022, 145, 877-891.	1.6	18
10	Implementation of preemptive DNA sequence–based pharmacogenomics testing across a large academic medical center: The Mayo-Baylor RIGHT 10K Study. Genetics in Medicine, 2022, 24, 1062-1072.	2.4	28
11	Polygenic risk score for peripheral artery disease: A tool to refine risk stratification. Vascular Medicine, 2022, , 1358863X2210801.	1.5	1
12	Polygenic scores in biomedical research. Nature Reviews Genetics, 2022, 23, 524-532.	16.3	69
13	Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nature Medicine, 2022, 28, 1412-1420.	30.7	48
14	Large-scale genomic analyses reveal insights into pleiotropy across circulatory system diseases and nervous system disorders. Nature Communications, 2022, 13, .	12.8	6
15	Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations. Current Cardiology Reports, 2022, 24, 1169-1177.	2.9	10
16	Returning negative results from <scp>largeâ€scale</scp> genomic screening: Experiences from the <scp>eMERGE III</scp> network. American Journal of Medical Genetics, Part A, 2021, 185, 508-516.	1.2	5
17	Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants. International Journal of Obesity, 2021, 45, 155-169.	3.4	19
18	Loci identified by a genomeâ€wide association study of carotid artery stenosis in the eMERGE network. Genetic Epidemiology, 2021, 45, 4-15.	1.3	6

#	Article	IF	CITATIONS
19	Association between triglycerides, known risk SNVs and conserved rare variation in SLC25A40 in a multi-ancestry cohort. BMC Medical Genomics, 2021, 14, 11.	1.5	4
20	Usability of a Digital Registry to Promote Secondary Prevention for Peripheral Artery Disease Patients. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 94-102.	2.4	2
21	Improving reporting standards for polygenic scores in risk prediction studies. Nature, 2021, 591, 211-219.	27.8	265
22	"Who Doesn't Like Receiving Good News?―Perspectives of Individuals Who Received Genomic Screening Results by Mail. Journal of Personalized Medicine, 2021, 11, 322.	2.5	1
23	Penetrance and outcomes at 1-year following return of actionable variants identified by genome sequencing. Genetics in Medicine, 2021, 23, 1192-1201.	2.4	4
24	Genetic basis of hypercholesterolemia in adults. Npj Genomic Medicine, 2021, 6, 28.	3.8	22
25	Preferences for Updates on General Research Results: A Survey of Participants in Genomic Research from Two Institutions. Journal of Personalized Medicine, 2021, 11, 399.	2.5	3
26	Practice Patterns After Return of Rare Variants Associated With Cardiomyopathy in the Electronic Medical Records and Genomics Network. Circulation: Heart Failure, 2021, 14, e008155.	3.9	1
27	Genomic considerations for FHIR®; eMERGE implementation lessons. Journal of Biomedical Informatics, 2021, 118, 103795.	4.3	15
28	Familial hypercholesterolemia in Southeast and East Asia. American Journal of Preventive Cardiology, 2021, 6, 100157.	3.0	7
29	A unified framework identifies new links between plasma lipids and diseases from electronic medical records across large-scale cohorts. Nature Genetics, 2021, 53, 972-981.	21.4	17
30	Leveraging the Electronic Health Record to Address the COVID-19 Pandemic. Mayo Clinic Proceedings, 2021, 96, 1592-1608.	3.0	17
31	Coronary Heart Disease Risk Associated with Primary Isolated Hypertriglyceridemia; a Populationâ€Based Study. Journal of the American Heart Association, 2021, 10, e019343.	3.7	10
32	A call for training programmes in cardiovascular genomics. Nature Reviews Cardiology, 2021, 18, 539-540.	13.7	4
33	Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies. Npj Digital Medicine, 2021, 4, 116.	10.9	7
34	Associations of Genetically Predicted Lp(a) (Lipoprotein [a]) Levels With Cardiovascular Traits in Individuals of European and African Ancestry. Circulation Genomic and Precision Medicine, 2021, 14, e003354.	3.6	21
35	Cost-effectiveness of cascade genetic testing for familial hypercholesterolemia in the United States: A simulation analysis. American Journal of Preventive Cardiology, 2021, 8, 100245.	3.0	15
36	Increasing access to individualized medicine: a matched-cohort study examining Latino participant experiences of genomic screening. Genetics in Medicine, 2021, 23, 934-941.	2.4	6

#	Article	IF	CITATIONS
37	Experiences of Latino Participants Receiving Neutral Genomic Screening Results: A Qualitative Study. Public Health Genomics, 2021, 24, 44-53.	1.0	3
38	Integrating Genomic Screening into Primary Care: Provider Experiences Caring for Latino Patients at a Community-Based Health Center. Journal of Primary Care and Community Health, 2021, 12, 215013272110002.	2.1	5
39	Implementation Science to Increase Adoption of Genomic Medicine: An Urgent Need. Journal of Personalized Medicine, 2021, 11, 19.	2.5	5
40	Genome-Wide Association Study of Peripheral Artery Disease. Circulation Genomic and Precision Medicine, 2021, 14, e002862.	3.6	24
41	Genetic investigation of fibromuscular dysplasia identifies risk loci and shared genetics with common cardiovascular diseases. Nature Communications, 2021, 12, 6031.	12.8	34
42	Integrating pharmacogenomics into the electronic health record by implementing genomic indicators. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 154-158.	4.4	29
43	"They're Not Going to Do Nothing for Me― Research Participants' Attitudes towards Elective Genetic Counseling. Journal of Personalized Medicine, 2020, 10, 143.	2.5	3
44	Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran Program. Circulation, 2020, 142, 1633-1646.	1.6	78
45	Patient reactions to receiving negative genomic screening results by mail. Genetics in Medicine, 2020, 22, 1994-2002.	2.4	6
46	Challenges in returning results in a genomic medicine implementation study: the Return of Actionable Variants Empirical (RAVE) study. Npj Genomic Medicine, 2020, 5, 19.	3.8	7
47	Familial Hypercholesterolemia. Circulation, 2020, 142, 1999-2001.	1.6	3
48	Polygenic Risk Scores for DiverseÂAncestries. Journal of the American College of Cardiology, 2020, 76, 715-718.	2.8	9
49	Participant choices for return of genomic results in the eMERGE Network. Genetics in Medicine, 2020, 22, 1821-1829.	2.4	25
50	Using the electronic health record for genomics research. Current Opinion in Lipidology, 2020, 31, 85-93.	2.7	4
51	An Implementation Science Framework to Develop a Clinical Decision Support Tool for Familial Hypercholesterolemia. Journal of Personalized Medicine, 2020, 10, 67.	2.5	15
52	Returning genomic results in a Federally Qualified Health Center: the intersection of precision medicine and social determinants of health. Genetics in Medicine, 2020, 22, 1552-1559.	2.4	21
53	Risk Factors for Polyvascular Involvement in Patients With Peripheral Artery Disease: A Mendelian Randomization Study. Journal of the American Heart Association, 2020, 9, e017740.	3.7	17
54	75-Year-Old Woman With Chest Pain and Shortness of Breath. Mayo Clinic Proceedings, 2020, 95, e47-e52.	3.0	0

#	Article	IF	CITATIONS
55	Understanding the Return of Genomic Sequencing Results Process: Content Review of Participant Summary Letters in the eMERGE Research Network. Journal of Personalized Medicine, 2020, 10, 38.	2.5	15
56	Returning Results in the Genomic Era: Initial Experiences of the eMERGE Network. Journal of Personalized Medicine, 2020, 10, 30.	2.5	39
57	Frequency of genomic secondaryÂfindings among 21,915 eMERGE network participants. Genetics in Medicine, 2020, 22, 1470-1477.	2.4	61
58	Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups. American Journal of Human Genetics, 2020, 106, 707-716.	6.2	93
59	Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PACE) study. PLoS Genetics, 2020, 16, e1008684.	3.5	17
60	Sex-specific associations of inflammation markers with cognitive decline. Experimental Gerontology, 2020, 138, 110986.	2.8	8
61	Neutral, Negative, or Negligible? Changes in Patient Perceptions of Disease Risk Following Receipt of a Negative Genomic Screening Result. Journal of Personalized Medicine, 2020, 10, 24.	2.5	5
62	Failure to follow up on a medically actionable finding from direct to consumer genetic testing: A case report. Molecular Genetics & Genomic Medicine, 2020, 8, e1252.	1.2	2
63	Deploying Clinical Decision Support for Familial Hypercholesterolemia. ACI Open, 2020, 04, e157-e161.	0.5	4
64	Discovering novel biochemical and genetic markers for coronary heart disease in Qatari individuals: The initiative Qatar cardiovascular biorepository. Heart Views, 2020, 21, 6.	0.2	6
65	Title is missing!. , 2020, 16, e1008684.		0
66	Title is missing!. , 2020, 16, e1008684.		0
67	Title is missing!. , 2020, 16, e1008684.		0
68	Title is missing!. , 2020, 16, e1008684.		0
69	Title is missing!. , 2020, 16, e1008684.		0
70	Title is missing!. , 2020, 16, e1008684.		0
71	Use of Twitter to Promote Awareness of Familial Hypercholesterolemia. Circulation Genomic and Precision Medicine, 2019, 12, e002550.	3.6	8
72	Facilitating phenotype transfer using a common data model. Journal of Biomedical Informatics, 2019, 96, 103253.	4.3	49

#	Article	IF	CITATIONS
73	Making work visible for electronic phenotype implementation: Lessons learned from the eMERGE network. Journal of Biomedical Informatics, 2019, 99, 103293.	4.3	27
74	New Case Detection by Cascade Testing in Familial Hypercholesterolemia. Circulation Genomic and Precision Medicine, 2019, 12, e002723.	3.6	39
75	Longitudinal low density lipoprotein cholesterol goal achievement and cardiovascular outcomes among adult patients with familial hypercholesterolemia: The CASCADE FH registry. Atherosclerosis, 2019, 289, 85-93.	0.8	60
76	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	6.2	99
77	Electronic health record access by patients as an indicator of information seeking and sharing for cardiovascular health promotion in social networks: Secondary analysis of a randomized clinical trial. Preventive Medicine Reports, 2019, 13, 306-313.	1.8	1
78	Establishment of Specialized Clinical Cardiovascular Genetics Programs: Recognizing the Need and Meeting Standards: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2019, 12, e000054.	3.6	71
79	Targeted Sequencing Study to Uncover Shared Genetic Susceptibility Between Peripheral Artery Disease and Coronary Heart Disease—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1227-1233.	2.4	12
80	Interleukin-6 Receptor Signaling and Abdominal Aortic Aneurysm Growth Rates. Circulation Genomic and Precision Medicine, 2019, 12, e002413.	3.6	46
81	A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR. Npj Genomic Medicine, 2019, 4, 3.	3.8	26
82	Should pretest genetic counselling be required for patients pursuing genomic sequencing? Results from a survey of participants in a large genomic implementation study. Journal of Medical Genetics, 2019, 56, 317-324.	3.2	20
83	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	2.8	147
84	The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. Genetic Epidemiology, 2019, 43, 63-81.	1.3	63
85	Detecting potential pleiotropy across cardiovascular and neurological diseases using univariate, bivariate, and multivariate methods on 43,870 individuals from the eMERGE network. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2019, 24, 272-283.	0.7	6
86	Comorbidity Characterization Among eMERGE Institutions: A Pilot Evaluation with the Johns Hopkins Adjusted Clinical Groups® System. AMIA Summits on Translational Science Proceedings, 2019, 2019, 145-152.	0.4	2
87	Making pretest genomic counseling optional: lessons from the RAVE study. Genetics in Medicine, 2018, 20, 1157-1158.	2.4	13
88	Natural language processing of clinical notes for identification of critical limb ischemia. International Journal of Medical Informatics, 2018, 111, 83-89.	3.3	77
89	Lessening the Burden of Familial Hypercholesterolemia Using Health Information Technology. Circulation Research, 2018, 122, 26-27.	4.5	12
90	Innovative Informatics Approaches for Peripheral Artery Disease: Current State and Provider Survey of Strategies for Improving Guideline-Based Care. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2018, 2, 129-136.	2.4	14

#	Article	IF	CITATIONS
91	<i>LPA</i> Variants Are Associated With Residual Cardiovascular Risk in Patients Receiving Statins. Circulation, 2018, 138, 1839-1849.	1.6	64
92	Burden of hospitalization in clinically diagnosed peripheral artery disease: A community-based study. Vascular Medicine, 2018, 23, 23-31.	1.5	12
93	Patient and Provider Perspectives on a Decision Aid for Familial Hypercholesterolemia. Journal of Personalized Medicine, 2018, 8, 35.	2.5	9
94	The Return of Actionable Variants Empirical (RAVE) Study, a Mayo Clinic Genomic Medicine Implementation Study: Design and Initial Results. Mayo Clinic Proceedings, 2018, 93, 1600-1610.	3.0	29
95	Leveraging the Electronic Health Record to Create an Automated Realâ€Time Prognostic Tool for Peripheral Arterial Disease. Journal of the American Heart Association, 2018, 7, e009680.	3.7	23
96	Developing a Process for Returning Medically Actionable Genomic Variants to Latino Patients in a Federally Qualified Health Center. Public Health Genomics, 2018, 21, 77-84.	1.0	19
97	Association of Ankle-Brachial Indices With Limb Revascularization or Amputation in Patients With Peripheral Artery Disease. JAMA Network Open, 2018, 1, e185547.	5.9	21
98	Ethical Considerations Related to Return of Results from Genomic Medicine Projects: The eMERGE Network (Phase III) Experience. Journal of Personalized Medicine, 2018, 8, 2.	2.5	44
99	Design of a Controlled Trial of Cascade Screening for Hypercholesterolemia: The (CASH) Study. Journal of Personalized Medicine, 2018, 8, 27.	2.5	9
100	Adverse effects of long-term weight gain on microvascular endothelial function. Obesity Research and Clinical Practice, 2018, 12, 452-458.	1.8	7
101	A Clinical Decision Support Tool for Familial Hypercholesterolemia Based on Physician Input. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2018, 2, 103-112.	2.4	19
102	Empowering genomic medicine by establishing critical sequencing result data flows: the eMERGE example. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1375-1381.	4.4	21
103	Higher plasma leptin levels are associated with reduced left ventricular mass and left ventricular diastolic stiffness in black women: insights from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Hypertension Research, 2018, 41, 629-638.	2.7	18
104	A Network-Biology Informed Computational Drug Repositioning Strategy to Target Disease Risk Trajectories and Comorbidities of Peripheral Artery Disease. AMIA Summits on Translational Science Proceedings, 2018, 2017, 108-117.	0.4	4
105	Shared Decision-Making following Disclosure of Coronary Heart Disease Genetic Risk: Results from a Randomized Clinical Trial. Journal of Investigative Medicine, 2017, 65, 681-688.	1.6	22
106	Variability in assigning pathogenicity to incidental findings: insights from LDLR sequence linked to the electronic health record in 1013 individuals. European Journal of Human Genetics, 2017, 25, 410-415.	2.8	10
107	Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. Journal of Vascular Surgery, 2017, 65, 1753-1761.	1.1	75
108	Disclosing Genetic Risk for Coronary Heart Disease: Attitudes Toward Personal Information in Health Records. American Journal of Preventive Medicine, 2017, 52, 499-506.	3.0	9

#	Article	IF	CITATIONS
109	Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circulation Research, 2017, 120, 341-353.	4.5	166
110	Precision Cardiovascular Medicine: State of Genetic Testing. Mayo Clinic Proceedings, 2017, 92, 642-662.	3.0	49
111	Cardiovascular risk assessment in patients with rheumatoid arthritis: a correlative study of noninvasive arterial health testing. Clinical Rheumatology, 2017, 36, 763-771.	2.2	8
112	Sex differences in associations of cardio-ankle vascular index with left ventricular function and geometry. Vascular Medicine, 2017, 22, 465-472.	1.5	6
113	Effect of Disclosing Genetic Risk for Coronary Heart Disease on Information Seeking and Sharing. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	25
114	Motivation, Perception, and Treatment Beliefs in the Myocardial Infarction Genes (Mlâ€GENES) Randomized Clinical Trial. Journal of Genetic Counseling, 2017, 26, 1153-1161.	1.6	2
115	A <i>Dab2lp</i> Genotype: Sex Interaction is Associated with Abdominal Aortic Aneurysm Expansion. Journal of Investigative Medicine, 2017, 65, 1077-1082.	1.6	7
116	Multidisciplinary model to implement pharmacogenomics at the point of care. Genetics in Medicine, 2017, 19, 421-429.	2.4	74
117	Genome-wide study of resistant hypertension identified from electronic health records. PLoS ONE, 2017, 12, e0171745.	2.5	36
118	Plasma Osteopontin Levels and Adverse Cardiovascular Outcomes in the PEACE Trial. PLoS ONE, 2016, 11, e0156965.	2.5	33
119	Identifying peripheral arterial disease cases using natural language processing of clinical notes. , 2016, 2016, 126-131.		16
120	Rapid identification of familial hypercholesterolemia from electronic health records: The SEARCH study. Journal of Clinical Lipidology, 2016, 10, 1230-1239.	1.5	98
121	My Approach to the Patient With Familial Hypercholesterolemia. Mayo Clinic Proceedings, 2016, 91, 770-786.	3.0	35
122	Peripheral Artery Disease. New England Journal of Medicine, 2016, 374, 861-871.	27.0	214
123	A multi-locus genetic risk score for abdominal aortic aneurysm. Atherosclerosis, 2016, 246, 274-279.	0.8	11
124	Incorporating a Genetic Risk Score Into Coronary Heart Disease Risk Estimates. Circulation, 2016, 133, 1181-1188.	1.6	198
125	Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records. JAMA - Journal of the American Medical Association, 2016, 315, 47.	7.4	148
126	Family history of atherosclerotic vascular disease is associated with the presence of abdominal aortic aneurysm. Vascular Medicine, 2016, 21, 41-46.	1.5	5

#	Article	IF	CITATIONS
127	Sex Differences in the Associations of Hemodynamic Load With Left Ventricular Hypertrophy and Concentric Remodeling. American Journal of Hypertension, 2016, 29, 73-80.	2.0	34
128	PHACTR1 Is a Genetic Susceptibility Locus for Fibromuscular Dysplasia Supporting Its Complex Genetic Pattern of Inheritance. PLoS Genetics, 2016, 12, e1006367.	3.5	146
129	Associations of Alterations in Pulsatile Arterial Load With Left Ventricular Longitudinal Strain. American Journal of Hypertension, 2015, 28, 1325-1331.	2.0	17
130	A patient-centered approach to the development and pilot of a warfarin pharmacogenomics patient education tool for health professionals. Currents in Pharmacy Teaching and Learning, 2015, 7, 249-255.	1.0	6
131	The Genetic Basis of Peripheral Arterial Disease. Circulation Research, 2015, 116, 1551-1560.	4.5	68
132	Penetrance of Hemochromatosis in HFE Genotypes Resulting in p.Cys282Tyr and p.[Cys282Tyr];[His63Asp] in the eMERGE Network. American Journal of Human Genetics, 2015, 97, 512-520.	6.2	47
133	Design of a randomized controlled trial of disclosing genomic risk of coronary heart disease: the Myocardial Infarction Genes (MI-GENES) study. BMC Medical Genomics, 2015, 8, 51.	1.5	15
134	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	21.4	2,054
135	Abstract 15370: Genetic Study Identifies Common Variation in PHACTR1 to Associate With Fibromuscular Dysplasia (Best of Basic Science Abstract). Circulation, 2015, 132, .	1.6	5
136	Genome-Wide Association Study of Serum Creatinine Levels during Vancomycin Therapy. PLoS ONE, 2015, 10, e0127791.	2.5	19
137	Practical considerations in genomic decision support: The eMERGE experience. Journal of Pathology Informatics, 2015, 6, 50.	1.7	42
138	Abstract 16508: Effect of Disclosure of Genetic Risk for Coronary Heart Disease on Information Seeking and Information Sharing in a Randomized Clinical Trial (from the MI-GENES Investigators). Circulation, 2015, 132, .	1.6	1
139	Genetic Variants Associated with Serum Thyroid Stimulating Hormone (TSH) Levels in European Americans and African Americans from the eMERGE Network. PLoS ONE, 2014, 9, e111301.	2.5	34
140	Return of results in the genomic medicine projects of the eMERGE network. Frontiers in Genetics, 2014, 5, 50.	2.3	40
141	Whole Exome Sequencing Implicates an <i>INO80D</i> Mutation in a Syndrome of Aortic Hypoplasia, Premature Atherosclerosis, and Arterial Stiffness. Circulation: Cardiovascular Genetics, 2014, 7, 607-614.	5.1	21
142	The ATXN2-SH2B3 locus is associated with peripheral arterial disease: an electronic medical record-based genome-wide association study. Frontiers in Genetics, 2014, 5, 166.	2.3	40
143	eMERGEing progress in genomicsââ,¬â€ŧhe first seven years. Frontiers in Genetics, 2014, 5, 184.	2.3	79
144	Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index. Frontiers in Genetics, 2014, 5, 250.	2.3	66

#	Article	IF	CITATIONS
145	Preemptive Genotyping for Personalized Medicine: Design of the Right Drug, Right Dose, Right Time—Using Genomic Data to Individualize Treatment Protocol. Mayo Clinic Proceedings, 2014, 89, 25-33.	3.0	250
146	Arterial stiffness is associated with increase in blood pressure over time in treated hypertensives. Journal of the American Society of Hypertension, 2014, 8, 414-421.	2.3	30
147	Return of Genomic Results to Research Participants: The Floor, the Ceiling, and the Choices In Between. American Journal of Human Genetics, 2014, 94, 818-826.	6.2	342
148	A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Human Genetics, 2014, 133, 95-109.	3.8	135
149	Family History as a Risk Factor for Carotid Artery Stenosis. Stroke, 2014, 45, 2252-2256.	2.0	12
150	A Perspective on the New American College of Cardiology/American Heart Association Guidelines for Cardiovascular Risk Assessment. Mayo Clinic Proceedings, 2014, 89, 1244-1256.	3.0	25
151	Family History as a Risk Factor for Peripheral Arterial Disease. American Journal of Cardiology, 2014, 114, 928-932.	1.6	24
152	Abstract 20188: The Effect of Disclosing Genetic Risk for Coronary Heart Disease on Perceived Personal Control and Genetic Counseling Satisfaction: The MI-GENES Study. Circulation, 2014, 130, .	1.6	1
153	The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genetics in Medicine, 2013, 15, 761-771.	2.4	611
154	Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nature Biotechnology, 2013, 31, 1102-1111.	17.5	846
155	Ethical, legal, and social implications of incorporating genomic information into electronic health records. Genetics in Medicine, 2013, 15, 810-816.	2.4	80
156	Genome- and Phenome-Wide Analyses of Cardiac Conduction Identifies Markers of Arrhythmia Risk. Circulation, 2013, 127, 1377-1385.	1.6	167
157	Reply. Journal of the American College of Cardiology, 2013, 62, 258-259.	2.8	1
158	Sex Differences in Arterial Stiffness and Ventricular-Arterial Interactions. Journal of the American College of Cardiology, 2013, 61, 96-103.	2.8	244
159	Hypertension in pregnancy is a risk factor for peripheral arterial disease decades after pregnancy. Atherosclerosis, 2013, 229, 212-216.	0.8	40
160	A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Human Molecular Genetics, 2013, 22, 2941-2947.	2.9	88
161	Ethnic differences in ankle brachial index are present in middle-aged individuals without peripheral arterial disease. International Journal of Cardiology, 2013, 162, 228-233.	1.7	11
162	Disease Location Is Associated With Survival in Patients With Peripheral Arterial Disease. Journal of the American Heart Association, 2013, 2, e000304.	3.7	49

#	Article	IF	CITATIONS
163	Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e147-e154.	4.4	346
164	Leveraging the electronic health record to implement genomic medicine. Genetics in Medicine, 2013, 15, 270-271.	2.4	46
165	Billing code algorithms to identify cases of peripheral artery disease from administrative data. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e349-e354.	4.4	85
166	Genetic Variants That Confer Resistance to Malaria Are Associated with Red Blood Cell Traits in African-Americans: An Electronic Medical Record-based Genome-Wide Association Study. G3: Genes, Genomes, Genetics, 2013, 3, 1061-1068.	1.8	32
167	Associations of Candidate Biomarkers of Vascular Disease with the Ankle-Brachial Index and Peripheral Arterial Disease. American Journal of Hypertension, 2013, 26, 495-502.	2.0	31
168	An electronic medical record-linked biorepository to identify novel biomarkers for atherosclerotic cardiovascular disease. Global Cardiology Science & Practice, 2013, 2013, 10.	0.4	18
169	A collaborative approach to developing an electronic health record phenotyping algorithm for drug-induced liver injury. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e243-e252.	4.4	63
170	Clinical Correlates of Autosomal Chromosomal Abnormalities in an Electronic Medical Record–Linked Genome-Wide Association Study. Journal of Investigative Medicine High Impact Case Reports, 2013, 1, 232470961350893.	0.6	3
171	Enhancing the Power of Genetic Association Studies through the Use of Silver Standard Cases Derived from Electronic Medical Records. PLoS ONE, 2013, 8, e63481.	2.5	23
172	Identifying Abdominal Aortic Aneurysm Cases and Controls using Natural Language Processing of Radiology Reports. AMIA Summits on Translational Science Proceedings, 2013, 2013, 249-53.	0.4	17
173	An information extraction framework for cohort identification using electronic health records. AMIA Summits on Translational Science Proceedings, 2013, 2013, 149-53.	0.4	76
174	Clinical Correlates of Autosomal Chromosomal Abnormalities in an Electronic Medical Record-Linked Genome-Wide Association Study: A Case Series. Journal of Investigative Medicine, 2013, 1, .	1.6	0
175	Biomarkers Associated With Pulse Pressure in African-Americans and Non-Hispanic Whites. American Journal of Hypertension, 2012, 25, 145-151.	2.0	21
176	High Density GWAS for LDL Cholesterol in African Americans Using Electronic Medical Records Reveals a Strong Protective Variant in <i>APOE</i> . Clinical and Translational Science, 2012, 5, 394-399.	3.1	42
177	Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies. Circulation: Cardiovascular Genetics, 2012, 5, 100-112.	5.1	98
178	Genetics of Peripheral Artery Disease. Circulation, 2012, 125, 3220-3228.	1.6	59
179	Survival in Patients With Poorly Compressible Leg Arteries. Journal of the American College of Cardiology, 2012, 59, 400-407.	2.8	71
180	Genetic Loci Implicated in Erythroid Differentiation and Cell Cycle Regulation Are Associated With Red Blood Cell Traits. Mayo Clinic Proceedings, 2012, 87, 461-474.	3.0	43

#	Article	IF	CITATIONS
181	Gene expression profiling of peripheral blood mononuclear cells in the setting of peripheral arterial disease. Journal of Clinical Bioinformatics, 2012, 2, 6.	1.2	39
182	Mayo Genome Consortia: A Genotype-Phenotype Resource for Genome-Wide Association Studies With an Application to the Analysis of Circulating Bilirubin Levels. Mayo Clinic Proceedings, 2011, 86, 606-614.	3.0	63
183	Aortic Pulse Wave Velocity Is Associated With Measures of Subclinical Target Organ Damage. JACC: Cardiovascular Imaging, 2011, 4, 754-761.	5.3	99
184	Quality Control Procedures for Genomeâ€Wide Association Studies. Current Protocols in Human Genetics, 2011, 68, Unit1.19.	3.5	259
185	Risk factor profile for chronic kidney disease is similar to risk factor profile for small artery disease. Journal of Hypertension, 2011, 29, 1796-1801.	0.5	12
186	Usefulness of Red Cell Distribution Width to Predict Mortality in Patients With Peripheral Artery Disease. American Journal of Cardiology, 2011, 107, 1241-1245.	1.6	173
187	Complement Receptor 1 Gene Variants Are Associated with Erythrocyte Sedimentation Rate. American Journal of Human Genetics, 2011, 89, 131-138.	6.2	55
188	Variants Near FOXE1 Are Associated with Hypothyroidism and Other Thyroid Conditions: Using Electronic Medical Records for Genome- and Phenome-wide Studies. American Journal of Human Genetics, 2011, 89, 529-542.	6.2	232
189	Genotype-informed estimation of risk of coronary heart disease based on genome-wide association data linked to the electronic medical record. BMC Cardiovascular Disorders, 2011, 11, 66.	1.7	33
190	Geographic differences in allele frequencies of susceptibility SNPs for cardiovascular disease. BMC Medical Genetics, 2011, 12, 55.	2.1	47
191	The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Medical Genomics, 2011, 4, 13.	1.5	618
192	Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality. Genetic Epidemiology, 2011, 35, 887-898.	1.3	71
193	Increased Serum N-Terminal Pro–B-Type Natriuretic Peptide Levels in Patients With Medial Arterial Calcification and Poorly Compressible Leg Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 197-202.	2.4	23
194	A Bivariate Genome-Wide Approach to Metabolic Syndrome. Diabetes, 2011, 60, 1329-1339.	0.6	226
195	Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium. Science Translational Medicine, 2011, 3, 79re1.	12.4	302
196	Arterial dysfunction and functional performance in patients with peripheral artery disease: A review. Vascular Medicine, 2011, 16, 203-211.	1.5	44
197	Ultrasound Assessment of Brachial Artery Reactivity. , 2011, , 395-410.		0
198	Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms. AMIA Annual Symposium proceedings, 2011, 2011, 274-83.	0.2	68

#	Article	IF	CITATIONS
199	Sex and Ethnic Differences in 47 Candidate Proteomic Markers of Cardiovascular Disease: The Mayo Clinic Proteomic Markers of Arteriosclerosis Study. PLoS ONE, 2010, 5, e9065.	2.5	76
200	A Genome-Wide Association Study of Red Blood Cell Traits Using the Electronic Medical Record. PLoS ONE, 2010, 5, e13011.	2.5	105
201	Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. Journal of the American Medical Informatics Association: JAMIA, 2010, 17, 568-574.	4.4	136
202	Antibody-Based Protein Multiplex Platforms: Technical and Operational Challenges. Clinical Chemistry, 2010, 56, 186-193.	3.2	277
203	Early identification of cardiovascular risk using genomics and proteomics. Nature Reviews Cardiology, 2010, 7, 309-317.	13.7	56
204	Discovering peripheral arterial disease cases from radiology notes using natural language processing. AMIA Annual Symposium proceedings, 2010, 2010, 722-6.	0.2	43
205	Measurement and Quality Control Issues in Multiplex Protein Assays: A Case Study. Clinical Chemistry, 2009, 55, 1092-1099.	3.2	59
206	Plasma Midregional Pro-atrial Natriuretic Peptide Is Associated With Blood Pressure Indices and Hypertension Severity in Adults With Hypertension. American Journal of Hypertension, 2009, 22, 425-431.	2.0	20
207	Genome-Wide Association Studies for Atherosclerotic Vascular Disease and Its Risk Factors. Circulation: Cardiovascular Genetics, 2009, 2, 63-72.	5.1	44
208	Evolutionary Genetics of Coronary Heart Disease. Circulation, 2009, 119, 459-467.	1.6	35
209	Mid-Regional Pro-Adrenomedullin Is Associated With Pulse Pressure, Left Ventricular Mass, and Albuminuria in African Americans With Hypertension. American Journal of Hypertension, 2009, 22, 860-866.	2.0	14
210	Relation of Plasma Midregional Proatrial Natriuretic Peptide to Target Organ Damage in Adults With Systemic Hypertension. American Journal of Cardiology, 2009, 103, 1255-1260.	1.6	15
211	Complexity in the genetic architecture of leukoaraiosis in hypertensive sibships from the GENOA Study. BMC Medical Genomics, 2009, 2, 16.	1.5	39
212	Brachial-ankle pulse wave velocity is associated with walking distance in patients referred for peripheral arterial disease evaluation. Atherosclerosis, 2009, 206, 173-178.	0.8	35
213	C-reactive protein among community-dwelling hypertensives on single-agent antihypertensive treatment. Journal of the American Society of Hypertension, 2009, 3, 260-266.	2.3	16
214	Investigating the complex genetic architecture of ankle-brachial index, a measure of peripheral arterial disease, in non-Hispanic whites. BMC Medical Genomics, 2008, 1, 16.	1.5	20
215	Association of polymorphisms in NOS3 with the ankle-brachial index in hypertensive adults. Atherosclerosis, 2008, 196, 905-912.	0.8	31
216	Chapter 8 Atherogenic Lipoprotein Subprofiling. Advances in Clinical Chemistry, 2008, , 295-317.	3.7	10

#	Article	IF	CITATIONS
217	Association of Soluble Cell Adhesion Molecules with Ankle-Brachial Index in a Biethnic Cohort of Predominantly Hypertensive Individuals. Clinical Chemistry, 2008, 54, 1788-1795.	3.2	6
218	Forearm Vascular Reactivity and Arterial Stiffness in Asymptomatic Adults From the Community. Hypertension, 2008, 51, 1512-1518.	2.7	35
219	Molecular population genetics of PCSK9: a signature of recent positive selection. Pharmacogenetics and Genomics, 2008, 18, 169-179.	1.5	39
220	Genetic markers of vascular aging. Biomarkers in Medicine, 2007, 1, 453-465.	1.4	0
221	Markers of inflammation are inversely associated with V̇o2 max in asymptomatic men. Journal of Applied Physiology, 2007, 102, 1374-1379.	2.5	101
222	Brachial artery diameter and vasodilator response to nitroglycerine, but not flow-mediated dilatation, are associated with the presence and quantity of coronary artery calcium in asymptomatic adults. Clinical Science, 2007, 112, 175-182.	4.3	55
223	Comparative and evolutionary pharmacogenetics of ABCB1: complex signatures of positive selection on coding and regulatory regions. Pharmacogenetics and Genomics, 2007, 17, 667-678.	1.5	21
224	Association of Novel Risk Factors With the Ankle Brachial Index in African American and Non-Hispanic White Populations. Mayo Clinic Proceedings, 2007, 82, 709-716.	3.0	27
225	Associations of Serum Uric Acid With Markers of Inflammation, Metabolic Syndrome, and Subclinical Coronary Atherosclerosis. American Journal of Hypertension, 2007, 20, 83-89.	2.0	145
226	Association of Cardiovascular Risk Factors with Microvascular and Conduit Artery Function in Hypertensive Subjects. American Journal of Hypertension, 2007, 20, 735-742.	2.0	20
227	Measures of arterial stiffness and wave reflection are associated with walking distance in patients with peripheral arterial disease. Atherosclerosis, 2007, 191, 384-390.	0.8	49
228	Aortic augmentation index is associated with the ankle-brachial index: A community-based study. Atherosclerosis, 2007, 195, 248-253.	0.8	41
229	Association of Novel Risk Factors With the Ankle Brachial Index in African American and Non-Hispanic White Populations. Mayo Clinic Proceedings, 2007, 82, 709-716.	3.0	28
230	Arterial Ultrasonography and Tonometry as Adjuncts to Cardiovascular Risk Stratification. Journal of the American College of Cardiology, 2007, 49, 1413-1426.	2.8	121
231	Ethnic differences in low-density lipoprotein particle size in hypertensive adults. Journal of Clinical Lipidology, 2007, 1, 218-224.	1.5	11
232	Patterns of population differentiation of candidate genes for cardiovascular disease. BMC Genetics, 2007, 8, 48.	2.7	33
233	Methods for the selection of tagging SNPs: a comparison of tagging efficiency and performance. European Journal of Human Genetics, 2007, 15, 228-236.	2.8	28
234	Mechanisms of Disease: the genetic basis of coronary heart disease. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 558-569.	3.3	65

#	Article	IF	CITATIONS
235	Evidence for Positive Selection in the C-terminal Domain of the Cholesterol Metabolism Gene PCSK9 Based on Phylogenetic Analysis in 14 Primate Species. PLoS ONE, 2007, 2, e1098.	2.5	18
236	A genome-wide linkage scan for ankle–brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis, 2006, 187, 433-438.	0.8	48
237	Association of Plasma Homocysteine With Coronary Artery Calcification in Different Categories of Coronary Heart Disease Risk. Mayo Clinic Proceedings, 2006, 81, 177-182.	3.0	29
238	Aortic Augmentation Index Is Inversely Associated With Cardiorespiratory Fitness in Men Without Known Coronary Heart Disease. American Journal of Hypertension, 2006, 19, 1019-1024.	2.0	46
239	Molecular evolution of 5′ flanking regions of 87 candidate genes for atherosclerotic cardiovascular disease. Genetic Epidemiology, 2006, 30, 557-569.	1.3	11
240	HOPE 2: can supplementation with folic acid and B vitamins reduce cardiovascular risk?. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, 414-415.	3.3	9
241	Novel Genomic Loci Influencing Plasma Homocysteine Levels. Stroke, 2006, 37, 1703-1709.	2.0	22
242	Quantitative trait loci influencing low density lipoprotein particle size in African Americans. Journal of Lipid Research, 2006, 47, 1457-1462.	4.2	10
243	Aortic Pulse Wave Velocity Is Associated With the Presence and Quantity of Coronary Artery Calcium. Hypertension, 2006, 47, 174-179.	2.7	83
244	Conditional Risk Factors for Atherosclerosis. Mayo Clinic Proceedings, 2005, 80, 219-230.	3.0	83
245	Pleiotropic genetic effects contribute to the correlation between HDL cholesterol, triglycerides, and LDL particle size in hypertensive sibships. American Journal of Hypertension, 2005, 18, 99-103.	2.0	27
246	A Novel Quantitative Trait Locus on Chromosome 1 with Pleiotropic Effects on HDL-Cholesterol and LDL Particle Size in Hypertensive Sibships. American Journal of Hypertension, 2005, 18, 1084-1090.	2.0	16
247	C-Reactive Protein Is Related to Arterial Wave Reflection and Stiffness in Asymptomatic Subjects From the Community. American Journal of Hypertension, 2005, 18, 1123-1129.	2.0	91
248	Lack of Association Between Lipoprotein(a) and Coronary Artery Calcification in the Genetic Epidemiology Network of Arteriopathy (GENOA) Study. Mayo Clinic Proceedings, 2004, 79, 1258-1263.	3.0	23
249	Low-density lipoprotein particle size and coronary atherosclerosis in subjects belonging to hypertensive sibships. American Journal of Hypertension, 2004, 17, 845-851.	2.0	9
250	Relation of C-reactive protein and fibrinogen to coronary artery calcium in subjects with systemic hypertension. American Journal of Cardiology, 2003, 92, 56-58.	1.6	11
251	Early-onset peripheral arterial occlusive disease: clinical features and determinants of disease severity and location. Vascular Medicine, 2003, 8, 95-100.	1.5	37
252	Ethnic differences in peripheral arterial disease in the NHLBI Genetic Epidemiology Network of Arteriopathy (GENOA) study. Vascular Medicine, 2003, 8, 237-242.	1.5	132

#	Article	IF	CITATIONS
253	Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to) Tj ETQo	1,1,0.784 1.6	ŀ314 rgBT /○
254	Relation of low cardiorespiratory fitness to the metabolic syndrome in middle-aged men. American Journal of Cardiology, 2002, 90, 795-797.	1.6	47
255	Novel Risk Factors for Atherosclerosis. Mayo Clinic Proceedings, 2000, 75, 369-380.	3.0	141
256	Vascular Gene Transfer. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 196-207.	2.4	48
257	Adenovirus-Mediated Gene Transfer of Macrophage Colony Stimulating Factor to the Arterial Wall In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1157-1163.	2.4	22
258	Vulnerable Plaque: Pathobiology and Clinical Implications. Annals of Internal Medicine, 1998, 129, 1050.	3.9	169
259	Enhanced Endothelium-Dependent Relaxations After Gene Transfer of Recombinant Endothelial Nitric Oxide Synthase to Rabbit Carotid Arteries. Hypertension, 1997, 30, 314-320.	2.7	61