Lisa J White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517344/publications.pdf Version: 2024-02-01

LISA I M/HITE

#	Article	IF	CITATIONS
1	Non-pharmaceutical interventions and COVID-19 vaccination strategies in Senegal: a modelling study. BMJ Global Health, 2022, 7, e007236.	4.7	13
2	Mathematical analysis of a two-strain tuberculosis model in Bangladesh. Scientific Reports, 2022, 12, 3634.	3.3	9
3	Two-test algorithms for infectious disease diagnosis: Implications for COVID-19. PLOS Global Public Health, 2022, 2, e0000293.	1.6	4
4	Percolation across households in mechanistic models of non-pharmaceutical interventions in SARS-CoV-2 disease dynamics. Epidemics, 2022, 39, 100551.	3.0	4
5	Potential health and economic impacts of dexamethasone treatment for patients with COVID-19. Nature Communications, 2021, 12, 915.	12.8	40
6	Mathematical analysis of a two-strain disease model with amplification. Chaos, Solitons and Fractals, 2021, 143, 110594.	5.1	19
7	Cost-effectiveness and budget impact analyses for the prioritisation of the four available rotavirus vaccines in the national immunisation programme in Thailand. Vaccine, 2021, 39, 1402-1414.	3.8	3
8	A participatory modelling approach for investigating the spread of COVID-19 in countries of the Eastern Mediterranean Region to support public health decision-making. BMJ Global Health, 2021, 6, e005207.	4.7	15
9	Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach. PLoS ONE, 2021, 16, e0248846.	2.5	4
10	Vaccinating the world against COVID-19: getting the delivery right is the greatest challenge. BMJ Global Health, 2021, 6, e005273.	4.7	13
11	The assembly effect: the connectedness between populations is a doubleâ€edged sword for public health interventions. Malaria Journal, 2021, 20, 189.	2.3	2
12	Estimating the programmatic cost of targeted mass drug administration for malaria in Myanmar. BMC Public Health, 2021, 21, 826.	2.9	3
13	Impact of Non-pharmaceutical Interventions on the Control of COVID-19 in Iran: A Mathematical Modeling Study. International Journal of Health Policy and Management, 2021, , .	0.9	5
14	Equity for excellence in academic institutions: a manifesto for change. Wellcome Open Research, 2021, 6, 142.	1.8	6
15	Investment case for malaria elimination in South Africa: a financing model for resource mobilization to accelerate regional malaria elimination. Malaria Journal, 2021, 20, 344.	2.3	9
16	Levels of SARS-CoV-2 population exposure are considerably higher than suggested by seroprevalence surveys. PLoS Computational Biology, 2021, 17, e1009436.	3.2	21
17	Potential global impacts of alternative dosing regimen and rollout options for the ChAdOx1 nCoV-19 vaccine. Nature Communications, 2021, 12, 6370.	12.8	3
18	Algorithm in the Diagnosis of Febrile Illness Using Pathogen-specific Rapid Diagnostic Tests. Clinical Infectious Diseases, 2020, 70, 2262-2269.	5.8	11

#	Article	IF	CITATIONS
19	Influencing public health policy with data-informed mathematical models of infectious diseases: Recent developments and new challenges. Epidemics, 2020, 32, 100393.	3.0	31
20	Modeling drug-resistant tuberculosis amplification rates and intervention strategies in Bangladesh. PLoS ONE, 2020, 15, e0236112.	2.5	19
21	Model evaluation of target product profiles of an infant vaccine against respiratory syncytial virus (RSV) in a developed country setting. Vaccine: X, 2020, 4, 100055.	2.1	4
22	Modelling the COVID-19 pandemic in context: an international participatory approach. BMJ Global Health, 2020, 5, e003126.	4.7	47
23	Determinants of MDA impact and designing MDAs towards malaria elimination. ELife, 2020, 9, .	6.0	26
24	Modeling household dynamics on Respiratory Syncytial Virus (RSV). PLoS ONE, 2019, 14, e0219323.	2.5	7
25	A Population Dynamic Model to Assess the Diabetes Screening and Reporting Programs and Project the Burden of Undiagnosed Diabetes in Thailand. International Journal of Environmental Research and Public Health, 2019, 16, 2207.	2.6	8
26	Spatial Heterogeneity and Temporal Trends in Malaria on the Thai–Myanmar Border (2012–2017): A Retrospective Observational Study. Tropical Medicine and Infectious Disease, 2019, 4, 62.	2.3	15
27	Modelling population dynamics and seasonal movement to assess and predict the burden of melioidosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007380.	3.0	6
28	Human population movement and behavioural patterns in malaria hotspots on the Thai–Myanmar border: implications for malaria elimination. Malaria Journal, 2019, 18, 64.	2.3	27
29	The impact of targeted malaria elimination with mass drug administrations on falciparum malaria in Southeast Asia: A cluster randomised trial. PLoS Medicine, 2019, 16, e1002745.	8.4	105
30	Economic considerations support C-reactive protein testing alongside malaria rapid diagnostic tests to guide antimicrobial therapy for patients with febrile illness in settings with low malaria endemicity. Malaria Journal, 2019, 18, 442.	2.3	4
31	Malaria elimination transmission and costing in the Asia-Pacific: Developing an investment case. Wellcome Open Research, 2019, 4, 60.	1.8	11
32	An interactive application for malaria elimination transmission and costing in the Asia-Pacific. Wellcome Open Research, 2019, 4, 61.	1.8	7
33	Accounting for aetiology: can regional surveillance data alongside host biomarker-guided antibiotic therapy improve treatment of febrile illness in remote settings?. Wellcome Open Research, 2019, 4, 1.	1.8	11
34	Accounting for aetiology: can regional surveillance data alongside host biomarker-guided antibiotic therapy improve treatment of febrile illness in remote settings?. Wellcome Open Research, 2019, 4, 1.	1.8	17
35	Potential herd protection against Plasmodium falciparum infections conferred by mass antimalarial drug administrations. ELife, 2019, 8, .	6.0	14
36	Predicting the cost of malaria elimination in the Asia-Pacific. Wellcome Open Research, 2019, 4, 73.	1.8	0

#	Article	IF	CITATIONS
37	Predicting the severity of dengue fever in children on admission based on clinical features and laboratory indicators: application of classification tree analysis. BMC Pediatrics, 2018, 18, 109.	1.7	65
38	Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme. Lancet, The, 2018, 391, 1916-1926.	13.7	131
39	Reactive and pre-emptive vaccination strategies to control hepatitis E infection in emergency and refugee settings: A modelling study. PLoS Neglected Tropical Diseases, 2018, 12, e0006807.	3.0	14
40	Addressing challenges faced by insecticide spraying for the control of dengue fever in Bangkok, Thailand: a qualitative approach. International Health, 2018, 10, 349-355.	2.0	6
41	Infectivity of Chronic Malaria Infections and Its Consequences for Control and Elimination. Clinical Infectious Diseases, 2018, 67, 295-302.	5.8	9
42	Smartphones for community health in rural Cambodia: A feasibility study. Wellcome Open Research, 2018, 3, 69.	1.8	8
43	Geographic Resource Allocation Based on Cost Effectiveness: An Application to Malaria Policy. Applied Health Economics and Health Policy, 2017, 15, 299-306.	2.1	9
44	Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. The Lancet Global Health, 2017, 5, e680-e687.	6.3	102
45	Predicting the relative impacts of maternal and neonatal respiratory syncytial virus (RSV) vaccine target product profiles: A consensus modelling approach. Vaccine, 2017, 35, 403-409.	3.8	28
46	A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	9
47	Model citizen – Authors' reply. The Lancet Global Health, 2017, 5, e974.	6.3	1
48	Towards malaria elimination in Savannakhet, Lao PDR: mathematical modelling driven strategy design. Malaria Journal, 2017, 16, 483.	2.3	18
49	Identifying artemisinin resistance from parasite clearance half-life data with a simple Shiny web application. PLoS ONE, 2017, 12, e0177840.	2.5	4
50	Modelling the Impact and Cost-Effectiveness of Biomarker Tests as Compared with Pathogen-Specific Diagnostics in the Management of Undifferentiated Fever in Remote Tropical Settings. PLoS ONE, 2016, 11, e0152420.	2.5	45
51	Estimating the Impact of Expanding Treatment Coverage and Allocation Strategies for Chronic Hepatitis C in a Direct Antiviral Agent Era. PLoS ONE, 2016, 11, e0163095.	2.5	10
52	Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar–Thailand border. Malaria Journal, 2016, 15, 571.	2.3	33
53	The economic evaluation of human papillomavirus vaccination strategies against cervical cancer in women in Lao PDR: a mathematical modelling approach. BMC Health Services Research, 2016, 16, 418.	2.2	10
54	Malaria community health workers in Myanmar: a cost analysis. Malaria Journal, 2016, 15, 41.	2.3	14

#	Article	IF	CITATIONS
55	Dynamic Transmission Economic Evaluation of Infectious Disease Interventions in Low―and Middleâ€Income Countries: A Systematic Literature Review. Health Economics (United Kingdom), 2016, 25, 124-139.	1.7	24
56	Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR. PLoS ONE, 2016, 11, e0162915.	2.5	3
57	Spatio-temporal patterns of leptospirosis in Thailand: is flooding a risk factor?. Epidemiology and Infection, 2015, 143, 2106-2115.	2.1	34
58	Predicting the impact of border control on malaria transmission: a simulated focal screen and treat campaign. Malaria Journal, 2015, 14, 268.	2.3	18
59	Cost effectiveness and resource allocation of Plasmodium falciparum malaria control in Myanmar: a modelling analysis of bed nets and community health workers. Malaria Journal, 2015, 14, 376.	2.3	15
60	Hitting a Moving Target: A Model for Malaria Elimination in the Presence of Population Movement. PLoS ONE, 2015, 10, e0144990.	2.5	33
61	Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature, 2015, 528, S94-S101.	27.8	115
62	Defining the In Vivo Phenotype of Artemisinin-Resistant Falciparum Malaria: A Modelling Approach. PLoS Medicine, 2015, 12, e1001823.	8.4	36
63	Modeling the Dynamics of Plasmodium vivax Infection and Hypnozoite Reactivation In Vivo. PLoS Neglected Tropical Diseases, 2015, 9, e0003595.	3.0	87
64	Evaluating Clinical Trial Designs for Investigational Treatments of Ebola Virus Disease. PLoS Medicine, 2015, 12, e1001815.	8.4	45
65	Preterm or Not – An Evaluation of Estimates of Gestational Age in a Cohort of Women from Rural Papua New Guinea. PLoS ONE, 2015, 10, e0124286.	2.5	37
66	Estimating Gestational Age in Late Presenters to Antenatal Care in a Resource-Limited Setting on the Thai-Myanmar Border. PLoS ONE, 2015, 10, e0131025.	2.5	36
67	Accuracy of Combined Visual Inspection with Acetic Acid and Cervical Cytology Testing as a Primary Screening Tool for Cervical Cancer: a Systematic Review and Meta-Analysis. Asian Pacific Journal of Cancer Prevention, 2015, 16, 5889-5897.	1.2	7
68	Artemisinin resistance – modelling the potential human and economic costs. Malaria Journal, 2014, 13, 452.	2.3	102
69	Ethics, Economics, and the Use of Primaquine to Reduce Falciparum Malaria Transmission in Asymptomatic Populations. PLoS Medicine, 2014, 11, e1001704.	8.4	11
70	The diminishing returns of atovaquone-proguanil for elimination of Plasmodium falciparum malaria: modelling mass drug administration and treatment. Malaria Journal, 2014, 13, 380.	2.3	33
71	Towards malaria elimination in Mpumalanga, South Africa: a population-level mathematical modelling approach. Malaria Journal, 2014, 13, 297.	2.3	24
72	Evaluation of the Diagnostic Accuracy of a Typhoid IgM Flow Assay for the Diagnosis of Typhoid Fever in Cambodian Children Using a Bayesian Latent Class Model Assuming an Imperfect Gold Standard. American Journal of Tropical Medicine and Hygiene, 2014, 90, 114-120.	1.4	34

#	Article	IF	CITATIONS
73	Spatial and temporal epidemiology of clinical malaria in Cambodia 2004–2013. Malaria Journal, 2014, 13, 385.	2.3	74
74	Impact of malaria during pregnancy on pregnancy outcomes in a Ugandan prospectivecohort with intensive malaria screening and prompt treatment. Malaria Journal, 2013, 12, 139.	2.3	106
75	Defining Falciparum-Malaria-Attributable Severe Febrile Illness in Moderate-to-High Transmission Settings on the Basis of Plasma PfHRP2 Concentration. Journal of Infectious Diseases, 2013, 207, 351-361.	4.0	76
76	Understanding and Managing Zoonotic Risk in the New Livestock Industries. Environmental Health Perspectives, 2013, 121, 873-877.	6.0	58
77	Estimating the True Accuracy of Diagnostic Tests for Dengue Infection Using Bayesian Latent Class Models. PLoS ONE, 2013, 8, e50765.	2.5	39
78	Using a Web-Based Application to Define the Accuracy of Diagnostic Tests When the Gold Standard Is Imperfect. PLoS ONE, 2013, 8, e79489.	2.5	45
79	Diagnosing Severe Falciparum Malaria in Parasitaemic African Children: A Prospective Evaluation of Plasma PfHRP2 Measurement. PLoS Medicine, 2012, 9, e1001297.	8.4	123
80	Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes. PLoS Neglected Tropical Diseases, 2012, 6, e1488.	3.0	94
81	Estimation of gestational age from fundal height: a solution for resource-poor settings. Journal of the Royal Society Interface, 2012, 9, 503-510.	3.4	59
82	Estimating the clinical impact of introducing paediatric influenza vaccination in England and Wales. Vaccine, 2012, 30, 1208-1224.	3.8	52
83	Temporal trends in severe malaria in Chittagong, Bangladesh. Malaria Journal, 2012, 11, 323.	2.3	19
84	Treatment of Hepatitis C as Prevention: A Modeling Case Study in Vietnam. PLoS ONE, 2012, 7, e34548.	2.5	39
85	Defining Disease Heterogeneity to Guide the Empirical Treatment of Febrile Illness in Resource Poor Settings. PLoS ONE, 2012, 7, e44545.	2.5	16
86	Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance. PLoS ONE, 2012, 7, e37166.	2.5	79
87	Feasibility of malaria elimination. Lancet, The, 2011, 377, 638.	13.7	4
88	Modelling malaria elimination on the internet. Malaria Journal, 2011, 10, 191.	2.3	8
89	A frequentist approach to estimating the force of infection for a respiratory disease using repeated measurement data from a birth cohort. Statistical Methods in Medical Research, 2011, 20, 551-570.	1.5	2
90	Intrahost modeling of artemisinin resistance in <i>Plasmodium falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 397-402.	7.1	154

#	Article	IF	CITATIONS
91	Artemisinin antimalarials: preserving the "magic bullet― Drug Development Research, 2010, 71, 12-19.	2.9	60
92	Artemisinin resistance: current status and scenarios for containment. Nature Reviews Microbiology, 2010, 8, 272-280.	28.6	519
93	Duration of shedding of respiratory syncytial virus in a community study of Kenyan children. BMC Infectious Diseases, 2010, 10, 15.	2.9	46
94	Defining the True Sensitivity of Culture for the Diagnosis of Melioidosis Using Bayesian Latent Class Models. PLoS ONE, 2010, 5, e12485.	2.5	136
95	A dynamic model of pneumococcal infection in the United States: Implications for prevention through vaccination. Vaccine, 2010, 28, 3650-3660.	3.8	68
96	The role of mathematical modelling in guiding the science and economics of malaria elimination. International Health, 2010, 2, 239-246.	2.0	14
97	Modelling the dynamics of intramammary <i>E. coli</i> infections in dairy cows: understanding mechanisms that distinguish transient from persistent infections. Veterinary Research, 2010, 41, 13.	3.0	23
98	Guidelines for Field Surveys of the Quality of Medicines: A Proposal. PLoS Medicine, 2009, 6, e1000052.	8.4	152
99	The Impact of IPTi and IPTc Interventions on Malaria Clinical Burden – In Silico Perspectives. PLoS ONE, 2009, 4, e6627.	2.5	14
100	A mathematical model demonstrating indirect and overall effects of lactation therapy targeting subclinical mastitis in dairy herds. Preventive Veterinary Medicine, 2009, 90, 31-42.	1.9	35
101	ORIGINAL ARTICLE: Probability of emergence of antimalarial resistance in different stages of the parasite life cycle. Evolutionary Applications, 2009, 2, 52-61.	3.1	40
102	The role of mathematical modelling in malaria elimination and eradication (Comment on: Can malaria) Tj ETQq0	0 0 rgBT /0 1.8	Overlock 10
103	Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance. Malaria Journal, 2009, 8, 253.	2.3	151
104	The role of simple mathematical models in malaria elimination strategy design. Malaria Journal, 2009, 8, 212.	2.3	72
105	The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malaria Journal, 2009, 8, 31.	2.3	160
106	Rotavirus within day care centres in Oxfordshire, UK: characterization of partial immunity. Journal of the Royal Society Interface, 2008, 5, 1481-1490.	3.4	19
107	Respiratory Syncytial Virus Infection and Disease in Infants and Young Children Observed from Birth in Kilifi District, Kenya. Clinical Infectious Diseases, 2008, 46, 50-57.	5.8	140
108	Prospects for Malaria Eradication in Sub-Saharan Africa. PLoS ONE, 2008, 3, e1767.	2.5	72

#	Article	IF	CITATIONS
109	Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences, 2007, 209, 222-239.	1.9	73
110	The transmission and control of mastitis in dairy cows: A theoretical approach. Preventive Veterinary Medicine, 2006, 74, 67-83.	1.9	18
111	Seasonality of Respiratory Syncytial Virus Infection. Clinical Infectious Diseases, 2006, 43, 541-541.	5.8	10
112	The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: seasonality and cross-protection. Epidemiology and Infection, 2005, 133, 279-289.	2.1	109
113	The reinfection threshold. Journal of Theoretical Biology, 2005, 236, 111-113.	1.7	65
114	The structural identifiability of the susceptible infected recovered model with seasonal forcing. Mathematical Biosciences, 2005, 194, 175-197.	1.9	44
115	Respiratory Syncytial Virus Epidemiology in a Birth Cohort from Kilifi District, Kenya: Infection during the First Year of Life. Journal of Infectious Diseases, 2004, 190, 1828-1832.	4.0	79
116	Structural identifiability analysis of some highly structured families of statespace models using differential algebra. Journal of Mathematical Biology, 2004, 49, 433-454.	1.9	17
117	Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. Journal of Theoretical Biology, 2004, 228, 539-549.	1.7	141
118	The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows with postmilking teat disinfection. Mathematical Biosciences, 2002, 180, 275-291.	1.9	6
119	The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows. Mathematical Biosciences, 2001, 174, 77-90.	1.9	21
120	A multispecies model for the transmission and control of mastitis in dairy cows. Epidemiology and Infection, 2001, 127, 567-576.	2.1	20
121	Microparasite population dynamics and continuous immunity. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1977-1983.	2.6	18
122	Human movement patterns of farmers and forest workers from the Thailand-Myanmar border. Wellcome Open Research, 0, 6, 148.	1.8	0
123	Malaria elimination transmission and costing in the Asia-Pacific: Developing an investment case. Wellcome Open Research, 0, 4, 60.	1.8	14
124	Malaria elimination transmission and costing in the Asia-Pacific: a multi-species dynamic transmission model. Wellcome Open Research, 0, 4, 62.	1.8	12
125	An interactive application for malaria elimination transmission and costing in the Asia-Pacific. Wellcome Open Research, 0, 4, 61.	1.8	5
126	Malaria elimination transmission and costing in the Asia-Pacific: a multi-species dynamic transmission model. Wellcome Open Research, 0, 4, 62.	1.8	7