
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nature Photonics, 2012, 6, 845-851.	31.4	421
2	Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers. IEEE Photonics Technology Letters, 1999, 11, 325-327.	2.5	203
3	All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. Optics Express, 2008, 16, 9429.	3.4	144
4	Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 15 µm. Optics Letters, 2004, 29, 2846.	3.3	141
5	High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Optics Express, 2009, 17, 7533.	3.4	133
6	Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. Optics Express, 2004, 12, 317.	3.4	125
7	Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength. Optics Letters, 2002, 27, 152.	3.3	124
8	Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength. Optics Express, 2002, 10, 1151.	3.4	113
9	Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Optics Express, 2010, 18, 13708.	3.4	109
10	Octave spanning high-quality supercontinuum generation in all-fiber system. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1786.	2.1	103
11	Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006, 14, 1145.	3.4	102
12	Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1969.	2.1	90
13	Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 518-524.	2.9	88
14	Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800–1700 nm wavelength region. Biomedical Optics Express, 2012, 3, 282.	2.9	87
15	Development of a high power supercontinuum source in the 17 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography. Biomedical Optics Express, 2014, 5, 932.	2.9	86
16	Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser. Japanese Journal of Applied Physics, 2001, 40, L365-L367.	1.5	85
17	Ultrashort pulse fiber lasers and their applications. Japanese Journal of Applied Physics, 2014, 53, 090101.	1.5	79
18	Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Optics Express, 2012, 20, 13958.	3.4	74

#	Article	IF	CITATIONS
19	Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses. Optics Letters, 2012, 37, 431.	3.3	73
20	Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers. Optics Express, 2002, 10, 256.	3.4	60
21	Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating. Optics Express, 2001, 8, 328.	3.4	56
22	Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film. Optics Express, 2011, 19, 21874.	3.4	56
23	Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber. Optics Express, 2010, 18, 11700.	3.4	55
24	Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. Optics Express, 2009, 17, 20233.	3.4	54
25	Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength. Optics Express, 2003, 11, 359.	3.4	53
26	Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging. Scientific Reports, 2016, 6, 31715.	3.3	53
27	Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser. Optics Express, 2008, 16, 12859.	3.4	51
28	0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography. Scientific Reports, 2016, 5, 18042.	3.3	49
29	1.0–1.7-\$mu\$m Wavelength-Tunable Ultrashort-Pulse Generation Using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber. IEEE Photonics Technology Letters, 2006, 18, 2284-2286.	2.5	48
30	Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system. IEEE Photonics Technology Letters, 2005, 17, 37-39.	2.5	44
31	Time-Resolved Magnetization Dynamics and Damping Constant of Sputtered Co/Ni Multilayers. IEEE Transactions on Magnetics, 2011, 47, 3036-3039.	2.1	44
32	Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers. IEEE Photonics Technology Letters, 1999, 11, 421-423.	2.5	41
33	Ultrahigh-Resolution Optical Coherence Tomography in 1.7 µm Region with Fiber Laser Supercontinuum in Low-Water-Absorption Samples. Applied Physics Express, 2011, 4, 052501.	2.4	41
34	Analysis of Widely Wavelength Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers. Japanese Journal of Applied Physics, 1999, 38, 4768-4771.	1.5	40
35	0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber. IEEE Photonics Technology Letters, 2002, 14, 986-988.	2.5	40
36	Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber. Optics Express, 2010, 18, 20673.	3.4	40

#	Article	IF	CITATIONS
37	Generation and application of high-quality supercontinuum sources. Optical Fiber Technology, 2012, 18, 394-402.	2.7	38
38	Compositional Dependence of g-Factor and Damping Constant of GdFeCo Amorphous Alloy Films. IEEE Transactions on Magnetics, 2008, 44, 3380-3383.	2.1	37
39	Wavelength Dependence of Ultrahigh-Resolution Optical Coherence Tomography Using Supercontinuum for Biomedical Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-15.	2.9	35
40	Ultrafast all optical switching using pulse trapping in birefringent fibers. Optics Express, 2005, 13, 8128.	3.4	34
41	All-polarization-maintaining Er-doped dual comb fiber laser using single-wall carbon nanotubes. Optics Express, 2019, 27, 17868.	3.4	33
42	Widely Wavelength Tunable Ultrashort Soliton Pulse and Anti-Stokes Pulse Generation for Wavelengths of 1.32-1.75 µm. Japanese Journal of Applied Physics, 2000, 39, L409-L411.	1.5	29
43	Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88, .	2.5	27
44	Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator. IEEE Photonics Technology Letters, 2001, 13, 13-15.	2.5	26
45	Quasi-supercontinuum generation using 106î¼ multrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography. Optics Letters, 2010, 35, 3631.	3.3	26
46	Experimental analysis of guided acoustic wave Brillouin scattering in PANDA fibers. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1651.	2.1	24
47	Generation of Widely and Flatly Broadened, Low-Noise and High-Coherence Supercontinuum in All-Fiber System. Japanese Journal of Applied Physics, 2006, 45, L441-L443.	1.5	24
48	A cavity ring-down spectrometer for study of biomedical radiocarbon-labeled samples. Journal of Applied Physics, 2018, 124, .	2.5	24
49	Investigation of dispersion-managed, polarization-maintaining Er-doped figure-nine ultrashort-pulse fiber laser. Optics Express, 2019, 27, 19218.	3.4	24
50	Highly Functional All-Optical Control Using Ultrafast Nonlinear Effects in Optical Fibers. IEEE Journal of Quantum Electronics, 2009, 45, 1446-1455.	1.9	23
51	<i>In vivo</i> Ultrahigh-Resolution Ophthalmic Optical Coherence Tomography Using Gaussian-Shaped Supercontinuum. Japanese Journal of Applied Physics, 2010, 49, 012701.	1.5	23
52	Symmetric and asymmetric fiber loop mirrors for observing guided-acoustic-wave Brillouin scattering in polarization-maintaining fibers. Optics Letters, 1994, 19, 1424.	3.3	20
53	Wavelength-Tunable Femtosecond Soliton Pulse Generation for Wavelengths of 0.78–1.0 µm Using Photonic Crystal Fibers and a Ultrashort Fiber Laser. Japanese Journal of Applied Physics, 2003, 42, 449-452.	1.5	20
54	High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band. Applied Physics Express, 2016, 9, 022701.	2.4	20

#	Article	IF	CITATIONS
55	Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses. Optics Letters, 2008, 33, 2892.	3.3	19
56	Octave Spanning Coherent Supercontinuum Comb Generation Based on Er-Doped Fiber Lasers and Their Characterization. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	19
57	Squeezed Light Generation with1.064 µmNd:YAG Laser and0.85 µmSingle-Mode Fiber. Japanese Journal of Applied Physics, 1994, 33, 138-143.	1.5	18
58	Generation of 045-138 μm visible to near-infrared widely broadened supercontinuum using Er-doped ultrashort-pulse fiber laser system. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 426.	2.1	17
59	Development of a Fiber-Optic Optical Coherence Tomography Probe for Intraocular Use. , 2016, 57, OCT568.		17
60	Periodical spectral peaking on optical pulses. Optica, 2020, 7, 1089.	9.3	17
61	Dynamics of a Dispersion-Managed Passively Mode-Locked Er-Doped Fiber Laser Using Single Wall Carbon Nanotubes. Photonics, 2015, 2, 808-824.	2.0	15
62	Characteristics of Wavelength Tunable Femtosecond Soliton Pulse Generation Using Femtosecond Pump Laser and Polarization Maintaining Fiber. Optical Review, 2000, 7, 309-316.	2.0	14
63	Squeezed Vacuum Generation Using Symmetric Nonlinear Polarization Interferometer. Japanese Journal of Applied Physics, 2002, 41, L130-L132.	1.5	13
64	Wideband and nonmechanical sonogram measurement by use of an electronically controlled, wavelength-tunable, femtosecond soliton pulse. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2410.	2.1	13
65	Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber. IEEE Journal of Quantum Electronics, 2006, 42, 287-291.	1.9	13
66	Characteristics of spectral peaking in optical fibers. Optics Express, 2021, 29, 42876.	3.4	13
67	Generation of 14-fs ultrashort pulse in all fiber scheme by use of highly nonlinear hybrid fiber. Springer Series in Chemical Physics, 2005, , 31-33.	0.2	12
68	Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers. Optics Express, 2010, 18, 7323.	3.4	12
69	Octave spanning coherent supercontinuum generation using 51 fs high-power ultrashort pulse from Er-doped similariton amplifier. Japanese Journal of Applied Physics, 2014, 53, 020301.	1.5	12
70	Characteristics and improvement of wideband wavelength-tunable narrow-linewidth source by spectral compression in quasi-dispersion-increasing comb-profile fiber. Optics Express, 2016, 24, 23403.	3.4	12
71	Characteristics of Guided Acoustic Wave Brillouin Scattering in Polarization Maintaining Fibers. Optical Review, 1996, 3, 29-33.	2.0	11
72	Time-domain near-infrared spectroscopy using a wavelength-tunable narrow-linewidth source by spectral compression of ultrashort soliton pulses. Optics Letters, 2011, 36, 3780.	3.3	11

#	Article	IF	CITATIONS
73	High-speed ultrahigh-resolution spectral domain optical coherence tomography using high-power supercontinuum at 0.8 µm wavelength. Applied Physics Express, 2015, 8, 082501.	2.4	11
74	Full-range ultrahigh-resolution spectral-domain optical coherence tomography in 1.7 µm wavelength region for deep-penetration and high-resolution imaging of turbid tissues. Applied Physics Express, 2016, 9, 127002.	2.4	11
75	Wideband ultrafast fiber laser sources for OCT and metrology. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 182003.	1.5	11
76	Signal-to-background ratio and lateral resolution in deep tissue imaging by optical coherence microscopy in the 1700 nm spectral band. Scientific Reports, 2019, 9, 16041.	3.3	11
77	Effect of Group-Velocity Dispersion on Photon-Number Squeezing of Optical Pulses using Optical Fibers and Spectral Filter. Japanese Journal of Applied Physics, 1999, 38, 1961-1965.	1.5	10
78	Highly-sensitive and high-resolution all-fiber three-dimensional measurement system. Applied Optics, 2008, 47, 2503.	2.1	10
79	Octave Spanning High Quality Super Continuum Generation Using 10 nJ and 104 fs High Energy Ultrashort Soliton Pulse. Applied Physics Express, 2008, 1, 022009.	2.4	10
80	Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography. Biomedical Optics Express, 2012, 3, 735.	2.9	10
81	Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse. Electronics Letters, 2001, 37, 1077.	1.0	10
82	Control of Optical Pulse at Visible Region using Pulse Trapping by Soliton Pulse in Photonic Crystal Fibers. Applied Physics Express, 0, 2, 062501.	2.4	9
83	Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers. Optics Express, 2010, 18, 23070.	3.4	9
84	Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier. Applied Physics Express, 2014, 7, 122703.	2.4	9
85	Excitation of erbium-doped nanoparticles in 1550-nm wavelength region for deep tissue imaging with reduced degradation of spatial resolution. Journal of Biomedical Optics, 2019, 24, 1.	2.6	9
86	Mid-infrared cavity ring-down spectroscopy using DFB quantum cascade laser with optical feedback for radiocarbon detection. Japanese Journal of Applied Physics, 2020, 59, 092007.	1.5	9
87	High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band. Journal of Biomedical Optics, 2019, 24, 1.	2.6	9
88	Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG). Journal of the Optical Society of America B: Optical Physics, 2015, 32, 400.	2.1	8
89	Nonlinear Polarization Interferometer for Photon-Number Squeezed Light Generation. Japanese Journal of Applied Physics, 2001, 40, L1220-L1222.	1.5	7
90	Pedestal suppression of ultrashort pulses by using a birefringent nonlinear polarization rotation mirror. Optics Letters, 2007, 32, 3516.	3.3	7

#	Article	IF	CITATIONS
91	Axial resolution and signal-to-noise ratio in deep-tissue imaging with 1.7 - μ m high-resolution optical coherence tomography with an ultrabroadband laser source. Journal of Biomedical Optics, 2017, 22, 085002.	2.6	7
92	Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy. Hyperfine Interactions, 2017, 238, 1.	0.5	7
93	Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 µm. Applied Physics Express, 2017, 10, 012503.	2.4	7
94	Spectral peaking in an ultrashort-pulse fiber laser oscillator with a molecular gas cell. Optics Letters, 2022, 47, 2422.	3.3	7
95	Measurement of Chromatic Dispersion of Optical Fibers Using Wavelength-Tunable Soliton Pulses. Japanese Journal of Applied Physics, 2000, 39, 4990-4992.	1.5	6
96	High-speed three-dimensional measurement using electronically controlled wavelength-tunable ultrashort pulse fiber laser. Optics Letters, 2009, 34, 1921.	3.3	6
97	Optical-Fiber-Type Broadband Cavity Ring-Down Spectroscopy Using Wavelength-Tunable Ultrashort Pulsed Light. Japanese Journal of Applied Physics, 2013, 52, 040201.	1.5	6
98	3.1–5.2 μm Coherent MIR Frequency Comb Based on Yb-Doped Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	2.9	6
99	Effect of Guided Acoustic Wave Brillouin Scattering on Pulsed Squeezing in Optical Fibers with Nonlinearity and Dispersion. Optical Review, 1997, 4, 453-458.	2.0	5
100	Measurement of Timing Jitter in Wavelength Tunable Femtosecond Soliton Pulses. Optical Review, 2000, 7, 317-322.	2.0	5
101	Ultrafast all-optical signal regenerator using pulse trapping in birefringent fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2643.	2.1	5
102	A direct diode pumped Ti:sapphire laser with single-frequency operation for high resolution spectroscopy. Hyperfine Interactions, 2020, 241, 1.	0.5	5
103	Dispersion-managed, high-power, Tm-doped ultrashort pulse fiber laser using single-wall-carbon-nanotube polyimide film. OSA Continuum, 2021, 4, 137.	1.8	5
104	Generation and Detection of Squeezed Light with Phase Tunable Fiber Loop Mirror using Polarization Beam Splitter. Japanese Journal of Applied Physics, 1998, 37, L792-L794.	1.5	4
105	Analysis of Generation Mechanism of Photon-Number Squeezed Light Using Ultrashort Pulse and Asymmetric Fiber Loop Mirror. Japanese Journal of Applied Physics, 2000, 39, 6243-6247.	1.5	4
106	Characteristics of Intensity Noise Reduction of Optical Pulses Using Variable Spectral Filters and Optical Fibers. Japanese Journal of Applied Physics, 2000, 39, 5842-5846.	1.5	4
107	Ultrafast all-optical switching using pulse trapping by ultrashort soliton pulse in birefringent optical fiber. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2007, 158, 38-44.	0.4	4
108	Three-Dimensional Two-Photon Bit-Recording With a Compact Fiber Laser. IEEE Transactions on Magnetics, 2009, 45, 2232-2235.	2.1	4

#	Article	IF	CITATIONS
109	Compositional dependence ofg-factor and damping constant of (Gd100-xREx)FeCo alloy films (RE = Yb,) Tj ETQq1	10,7843 0.4	14 rgBT /0
110	High-speed, high-resolution, and large-scanning-range three-dimensional optical measurement system using a wavelength-tunable orthogonally polarized ultrashort twin pulse source. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 141.	2.1	4
111	Coherent ultrashort pulse generation from incoherent light by pulse trapping in birefringent fibers. Optics Express, 2012, 20, 11073.	3.4	4
112	Subharmonic Synchronization of Picosecond Yb Fiber Laser to Picosecond Ti:Sapphire Laser for Stimulated Raman Scattering Microscopy. Japanese Journal of Applied Physics, 2012, 51, 022702.	1.5	4
113	Subharmonic Synchronization of Picosecond Yb Fiber Laser to Picosecond Ti:Sapphire Laser for Stimulated Raman Scattering Microscopy. Japanese Journal of Applied Physics, 2012, 51, 022702.	1.5	4
114	Generation of Transform-Limited Pulse Train in New Scheme of Harmonically Mode-Locked Er-Doped Fiber Ring Lasers. Optical Review, 1998, 5, 5-8.	2.0	3
115	Generation of low-noise and high-coherence, ultrabroad and flat supercontinuum using high-power Raman soliton pulse and highly nonlinear fiber. , 2006, , .		3
116	Compact and High-Power Mode-Locked Fiber Laser for Three-Dimensional Optical Memory. Japanese Journal of Applied Physics, 2008, 47, 5797.	1.5	3
117	Ex-vivoImaging of Thyroid Gland Using Ultrahigh-Resolution Optical Coherence Tomography at Wavelength from 800 to 1700 nm. Japanese Journal of Applied Physics, 2012, 51, 030203.	1.5	3
118	Observation of Fine Lung Structure by Ultrahigh-Resolution Optical Coherence Tomography Using 800, 1060, and 1300 nm Supercontinua. Japanese Journal of Applied Physics, 2012, 51, 047001.	1.5	3
119	Temperature Measurement of Si Substrate Using Optical-Fiber-Type Low-Coherence Interferometry Employing Supercontinuum Light. Japanese Journal of Applied Physics, 2013, 52, 026602.	1.5	3
120	Development of Analytical Method for ¹⁴ C Determination in Biomedical Sample by Laser Spectroscopy. Radioisotopes, 2018, 67, 85-91.	0.2	3
121	Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs. Electronics Letters, 1998, 34, 2249.	1.0	2
122	Optical Frequency Comb Using Polarization Maintaining Er-doped Ultrashort Pulse Fiber Laser with Carbon-Nanotube Polyimide Film. , 2011, , .		2
123	Preselecting method for plutonium particle analysis in environmental samples by nuclear emulsion. Radiation Measurements, 2011, 46, 1807-1809.	1.4	2
124	Notice of Removal Non-destructive cross-sectional imaging of tomato using ultra-high resolution optical coherence tomography. , 2015, , .		2
125	Development of CO2 Cavity Ring-Down Spectroscopy for Medical Applications. , 2016, , .		2
126	Background Noise Reduction in Mid-Infrared Cavity Ring-Down Spectroscopy for Radiocarbon Analysis. , 2019, , .		2

NORIHIKO NISHIZAWA

#	Article	IF	CITATIONS
127	Experimental Analysis of Ultrashort Pulse Propagation along Optical Fibers Using the Technique of Cross-Correlation Frequency Resolved Optical Gating The Review of Laser Engineering, 2002, 30, 456-461.	0.0	2
128	Evaluation of noise increase due to pump light crosstalk in quadrature squeezed light generation with a fibre ring reflector. Optics and Laser Technology, 1994, 26, 49-53.	4.6	1
129	Intermodal injection locking of 1.55 [micro sign]m Fabry-Perot LD using four-wave mixing. Electronics Letters, 1999, 35, 1181.	1.0	1
130	Wavelength Tunable Ultrashort Pulse Fiber Laser The Review of Laser Engineering, 2001, 29, 84-89.	0.0	1
131	Generation of Squeezed Vacuum using Spectral Filter by Spatial Light Modulator and Nonlinear Polarization Interferometer. Japanese Journal of Applied Physics, 2003, 42, 5048-5051.	1.5	1
132	Generation of Squeezed Vacuum Using Wavelength-Tunable Soliton Pulse and Nonlinear Polarization Interferometer. Japanese Journal of Applied Physics, 2004, 43, L160-L163.	1.5	1
133	High-Peak-Power Ultrashort Pulse Generation Using All-Fiber Chirped Pulse Amplification System with Small Core Multimode Fiber. Japanese Journal of Applied Physics, 2005, 44, 177-180.	1.5	1
134	Super Continuum Generation Using ps High Energy Er-doped Fiber Laser at 1.55 um. , 2007, , .		1
135	Highly-Sensitive and High-Resolution Three Dimensional Measurement in All Fiber System. , 2007, , .		1
136	Coherent Ultrashort Pulse Generation from Incoherent Light by Trapped Pulse Amplification in Birefringent Fibers. , 2011, , .		1
137	Ex-vivo ultra-high-resolution optical coherence tomography imaging of fine lung structure by use of a high-power Gaussian-like supercontinuum at 0.8-μm wavelength. Proceedings of SPIE, 2011, , .	0.8	1
138	High-resolution high-speed tunable grating filter for stimulated Raman spectral imaging. , 2012, , .		1
139	Ultrahigh resolution optical coherence tomography imaging of diseased rat lung using Gaussian shaped super continuum sources. , 2012, , .		1
140	Octave spanning coherent supercontinuum generation by 51 fs pedestal free high power ultrashort pulse from similariton amplifier. , 2013, , .		1
141	Optical frequency comb using dispersion managed Er-doped ultrashort pulse fiber laser using carbon nanotube polyimide film. , 2013, , .		1
142	Highly functional ultrashort pulse fiber laser sources and applications for optical coherence tomography. , 2015, , .		1
143	Ultrabroadband spontaneous parametric fluorescence in 800 nm region toward ultrahigh-resolution quantum optical coherence tomography. , 2014, , .		1
144	Wideband Ultra-Short Pulse Fiber Lasers and Their Sensing Applications. , 2010, , .		1

144 Wideband Ultra-Short Pulse Fiber Lasers and Their Sensing Applications. , 2010, , .

9

#	Article	IF	CITATIONS
145	Quasi super continuum generation using programmably controlled wavelength tunable soliton pulses for optical coherence tomography. , 2008, , .		1
146	Ex-vivoImaging of Thyroid Gland Using Ultrahigh-Resolution Optical Coherence Tomography at Wavelength from 800 to 1700 nm. Japanese Journal of Applied Physics, 2012, 51, 030203.	1.5	1
147	Advance of Wideband Ultra-Short Pulse Fiber Lasers and Sensing Applications. , 2014, , .		1
148	Wavelength dependence of ultrahigh resolution optical coherence tomography using supercontinuum for deep imaging. , 2020, , .		1
149	Timing Jitter in Amplitude Modulated Harmonically Mode-Locked Er-Doped Fiber Ring Lasers. Optical Review, 1999, 6, 355-358.	2.0	Ο
150	Analysis of Effect of Chromatic Dispersion for Wavelength Tunable Ultrashort Soliton Pulse Generation. Optical Review, 2001, 8, 169-178.	2.0	0
151	Analysis of Coherence in Widely Broadened Supercontinuum Generation in Highly Nonlinear Dispersion Shifted Fiber. IEEJ Transactions on Electronics, Information and Systems, 2004, 124, 2395-2400.	0.2	0
152	Simple chromatic dispersion measurement by use of wavelength-tunable Raman soliton pulse and two-photon absorption. Electronics Letters, 2005, 41, 32.	1.0	0
153	All-fiber CW Raman continuum light source for ultrahigh resolution optical coherence tomography. , 2005, , .		0
154	Development of novel super-continuum fiber lasers and wavelength tunable soliton pulses. , 2006, 6389, 216.		0
155	Super continuum generation for real time ultrahigh resolution optical coherence tomography. , 2006, , .		0
156	1.0–1.7 μm wavelength-tunable ultrashort pulse generation using high-power mode-locked Yb-doped fiber laser and highly-nonlinear photonic crystal fiber. , 2006, , .		0
157	Ultrashort pulse generation using temporally overlapped two colored twin pulses generated by pulse trapping. , 2006, , .		0
158	Birefringent Nonlinear Polarization Rotation Mirror for Pedestal Suppression of Ultrashort Pulse. , 2007, , .		0
159	Highly functional optical control using ultrafast nonlinear optical effects induced by ultrashort pulse. Proceedings of SPIE, 2007, , .	0.8	0
160	Analysis of correlations among supercontinuum spectra using liquid crystal spatial light modulator. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2007, 158, 55-60.	0.4	0
161	0.4–1.4 μm Visible to Near-Infrared Widely Broadened Super Continuum Generation with Er-doped Ultrashort Pulse Fiber Laser System. , 2009, , .		0
162	Non-Contact, High-Sensitivity, and High-Accuracy All-Fiber Three-Dimensional Measurement System Using Broadband Light Source. The Review of Laser Engineering, 2009, 37, 52-56.	0.0	0

#	Article	IF	CITATIONS
163	Highly functional all-optical control using ultrafast nonlinear phenomena in optical fibers. , 2009, , .		0
164	Highly functional all optical control using ultrafast nonlinear effects in optical fibers. , 2009, , .		0
165	Octave spanning high quality super continuum generation using ultrashort pulse fiber laser ∼Highly functional optical control using ultrafast nonlinear effects in optical fibers∼. , 2009, , .		0
166	Ultrashort Pulse Generation from cw Beam by Trapped Pulse Amplification in Birefringent Fibers. , 2010, , .		0
167	Fiber Laser Based Optical Frequency Comb System Using Fiber Chirped Pulse Amplification Technique. , 2010, , .		0
168	Application of trapped pulse amplification in birefringent fibers. , 2010, , .		0
169	Dynamics of Er-doped ultrashort pulse fiber laser using single wall carbon nanotube polyimide film. , 2011, , .		0
170	Experimental investigation of wavelength dependence of penetration depth and imaging contrast for ultrahigh-resolution optical coherence tomography. , 2011, , .		0
171	Generation of broadband spontaneous parametric fluorescence and its application to quantum optical coherence tomography. Proceedings of SPIE, 2011, , .	0.8	0
172	Rapid, Wideband, Wavelength Tunable Narrow Linewidth Source by Spectral Compression of Ultrashort Soliton Pulses. , 2011, , .		0
173	Three-Dimensional Optical Measurement with Spectroscopic Function Using Fiber Laser Supercontinuum. Japanese Journal of Applied Physics, 2011, 50, 032702.	1.5	0
174	Ultrahigh resolution optical coherence tomography imaging of lung structure using Gaussian shaped super continuum sources. , 2011, , .		0
175	Characteristics of ultrashort pulse generation from incoherent light by trapped pulse amplification in birefringent fibers. , 2011, , .		0
176	Quantitative comparison of scattering coefficient with ultrahigh resolution optical coherence tomography. , 2011, , .		0
177	High-Speed Molecular Spectral Imaging by Stimulated Raman Scattering Microscopy Using Wavelength-Tunable Pulses. , 2012, , .		0
178	Sensitivity Enhancement of Fiber-Laser-Based Stimulated Raman Scattering Microscopy by Intensity Noise Suppressor. , 2012, , .		0
179	Modeling and Power Scaling of Carbon-Nanotube Mode-Locked Fiber Lasers. , 2012, , .		0

180 Ultrahigh resolution optical coherence tomography. , 2012, , .

0

#	Article	IF	CITATIONS
181	Quantitative comparison of wavelength dependence on penetration depth and imaging contrast for ultrahigh-resolution optical coherence tomography using supercontinuum sources at five wavelength regions. Proceedings of SPIE, 2012, , .	0.8	0
182	Ultrahigh-resolution optical coherence tomography imaging of protein crystals using gel inclusion technique. , 2013, , .		0
183	Three-dimensional ultrahigh-resolution optical coherence tomography imaging of lung tissues. , 2013, , .		0
184	Ultrahigh resolution optical coherence tomography using high power fiber laser supercontinuum at 1.7 μm wavelength region. , 2013, , .		0
185	Generation of high-quality supercontinuum using ultrashort pulse fiber laser system with carbon nanotube. , 2013, , .		0
186	High-resolution quantum optical coherence tomography by broadband parametric fluorescence. , 2013, , .		0
187	Label-free observation of tissues by high-speed stimulated Raman spectral microscopy and independent component analysis. Proceedings of SPIE, 2013, , .	0.8	Ο
188	Carbon-Nanotube Mode-Locked Fiber Lasers and Their Applications to OCT. , 2014, , .		0
189	Ultrahigh Resolution OCT Using Supercontinuum. Nippon Laser Igakkaishi, 2015, 35, 432-437.	0.0	Ο
190	Characteristics of Spectral Peaking in Coherent Supercontinuum Generation. , 2021, , .		0
191	Observation of nonlinear dynamics in ultrashort pulse propagation along fibers by use of X-FROG technique. , 2003, , .		Ο
192	High peak power ultrashort pulse generation using all-fiber chirped pulse amplification system with small core multimode fiber. Springer Series in Chemical Physics, 2005, , 34-36.	0.2	0
193	Development of Femtosecond Fiber Laser. The Review of Laser Engineering, 2005, 33, S13-S14.	0.0	Ο
194	Advance of Femtosecond Lasers and Fiber Lasers. The Review of Laser Engineering, 2008, 36, S25-S26.	0.0	0
195	3-dimensional measurement using electronically controlled wavelength-tunable ultrashort pulse fiber laser. , 2008, , .		Ο
196	Control of Optical Pulse at Visible Region Using Pulse Trapping in Photonic Crystal Fibers. , 2009, , .		0
197	Quasi-Super-Continuum Generation Using Ultrahigh-Speed Wavelength-Tunable Soliton Pulses Based on 1.06 $\hat{1}4$ m Ultrashort Pulse Laser System. , 2009, , .		0
198	Subharmonic Synchronization of Two-Color Laser Pulses for Stimulated Raman Scattering Microscopy. , 2010, , .		0

#	Article	IF	CITATIONS
199	All-Optical Signal Regeneration using Pulse Trapping in Birefringent Fibers. , 2010, , .		ο
200	Three-Dimensional Optical Measurement with Spectroscopic Function Using Fiber Laser Supercontinuum. Japanese Journal of Applied Physics, 2011, 50, 032702.	1.5	0
201	Observation of Fine Lung Structure by Ultrahigh-Resolution Optical Coherence Tomography Using 800, 1060, and 1300 nm Supercontinua. Japanese Journal of Applied Physics, 2012, 51, 047001.	1.5	Ο
202	285 mW High Power, Dissipative-Soliton Mode-Locked, Er-doped Fiber Laser using Carbon Nanotube. , 2013, , .		0
203	Octave spanning coherent supercontinuum generation by 46 fs pedestal free ultrashort pulse using similariton amplifier and Er-doped fiber laser with carbon nanotube. , 2014, , .		0
204	Characterization of New Scheme of Amplitude Modulated Harmonically Mode-Locked Fiber Ring Lasers The Review of Laser Engineering, 1998, 26, 554-558.	0.0	0
205	Development of Wideband Fiber Laser Sources for Ultrahigh-Resolution Optical Coherence Tomography. The Review of Laser Engineering, 2015, 43, 521.	0.0	0
206	Ultrahigh-resolution spectral domain optical coherence tomography in 1.7 um wavelength region. , 2016, , .		0
207	High-resolution optical coherence microscopy using high-power supercontinuum source in 1700 nm spectral band. , 2016, , .		0
208	Ultrahigh resolution optical coherence tomography using supercontinuum and their wavelength dependence. , 2017, , .		0
209	Fiber laser based supercontinuum generation in 2.1 µm wavelength for optical coherence tomography. , 2017, , .		0
210	Development of Near-Infrared to Mid-Infrared (NIR-MIR) Optical Frequency Comb Source Based on Fiber Lasers. The Review of Laser Engineering, 2018, 46, 67.	0.0	0
211	Development of Ultrawideband Supercontinuum Source. The Review of Laser Engineering, 2019, 47, 568.	0.0	0
212	Deep tissue imaging by optical coherence tomography / microscopy at Optical Window III. , 2021, , .		0
213	Dependence of ultrahigh resolution optical coherence tomography using supercontinuum. , 2020, , .		0
214	OCT: Ultrahigh Resolution Optical Coherence Tomography at Visible to Near-Infrared Wavelength Region. , 2022, , 305-313.		0