
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5515960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-Hour Rule-out and Rule-in of Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin T. Archives of Internal Medicine, 2012, 172, 1211.	3.8	439
2	Perioperative Myocardial Injury After Noncardiac Surgery. Circulation, 2018, 137, 1221-1232.	1.6	337
3	Validation of High-Sensitivity Troponin I in a 2-Hour Diagnostic Strategy to Assess 30-Day Outcomes in Emergency Department Patients With Possible AcuteÂCoronary Syndrome. Journal of the American College of Cardiology, 2013, 62, 1242-1249.	2.8	277
4	Rapid Rule-out of Acute Myocardial Infarction With a Single High-Sensitivity Cardiac Troponin T Measurement Below the Limit of Detection. Annals of Internal Medicine, 2017, 166, 715.	3.9	231
5	Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay. Cmaj, 2015, 187, E243-E252.	2.0	195
6	Diagnosis of Myocardial Infarction Using a High-Sensitivity Troponin I 1-Hour Algorithm. JAMA Cardiology, 2016, 1, 397.	6.1	186
7	Clinical Use of High-Sensitivity Cardiac Troponin in Patients With Suspected Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 996-1012.	2.8	183
8	Optimal Cutoff Levels of More Sensitive Cardiac Troponin Assays for the Early Diagnosis of Myocardial Infarction in Patients With Renal Dysfunction. Circulation, 2015, 131, 2041-2050.	1.6	174
9	One-hour Rule-in and Rule-out of Acute Myocardial Infarction Using High-sensitivity Cardiac Troponin I. American Journal of Medicine, 2015, 128, 861-870.e4.	1.5	174
10	Rapid rule out of acute myocardial infarction using undetectable levels of high-sensitivity cardiac troponin. International Journal of Cardiology, 2013, 168, 3896-3901.	1.7	172
11	Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. European Heart Journal, 2014, 35, 2303-2311.	2.2	166
12	Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 620-632.	2.8	147
13	Direct Comparison of 4 Very Early Rule-Out Strategies for Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin I. Circulation, 2017, 135, 1597-1611.	1.6	138
14	Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. European Heart Journal, 2016, 37, 3324-3332.	2.2	132
15	Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation, 2019, 140, 899-909.	1.6	128
16	Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 483-494.	2.8	126
17	Sex-Specific Chest Pain Characteristics in the Early Diagnosis of Acute Myocardial Infarction. JAMA Internal Medicine, 2014, 174, 241.	5.1	121
18	Two-hour Algorithm for Triage Toward Rule-out and Rule-in of Acute Myocardial Infarction Using High-sensitivity Cardiac Troponin T. American Journal of Medicine, 2015, 128, 369-379.e4.	1.5	121

KARIN WILDI

#	Article	IF	CITATIONS
19	Misdiagnosis of Myocardial Infarction Related to Limitations of the Current Regulatory Approach to Define Clinical Decision Values for Cardiac Troponin. Circulation, 2015, 131, 2032-2040.	1.6	111
20	0/1-Hour Triage Algorithm for Myocardial Infarction in Patients With Renal Dysfunction. Circulation, 2018, 137, 436-451.	1.6	110
21	Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2018, 64, 1347-1360.	3.2	110
22	One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. American Heart Journal, 2016, 171, 92-102.e5.	2.7	102
23	Two-Hour Algorithm for Triage toward Rule-Out and Rule-In of Acute Myocardial Infarction by Use of High-Sensitivity Cardiac Troponin I. Clinical Chemistry, 2016, 62, 494-504.	3.2	95
24	Effect of Definition on Incidence and Prognosis of Type 2 Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 1558-1568.	2.8	94
25	Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology, 2020, 75, 1111-1124.	2.8	94
26	Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0 h/1 h-algorithm for the early diagnosis of acute myocardial infarction. International Journal of Cardiology, 2016, 207, 238-245.	1.7	85
27	Risk stratification in patients with acute chest pain using three high-sensitivity cardiac troponin assays. European Heart Journal, 2014, 35, 365-375.	2.2	83
28	Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. European Heart Journal, 2018, 39, 3780-3794.	2.2	78
29	Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction. Heart, 2013, 99, 708-714.	2.9	77
30	Clinical Effect of Sex-Specific Cutoff Values of High-Sensitivity Cardiac Troponin T in Suspected Myocardial Infarction. JAMA Cardiology, 2016, 1, 912.	6.1	75
31	Diurnal Rhythm of Cardiac Troponin: Consequences for the Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2016, 62, 1602-1611.	3.2	71
32	Safety and efficacy of the 0 h/3 h protocol for rapid rule out of myocardial infarction. American Heart Journal, 2016, 181, 16-25.	2.7	63
33	Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2017, 136, 1495-1508.	1.6	63
34	Impact of haemoconcentration during acute heart failure therapy on mortality and its relationship with worsening renal function. European Journal of Heart Failure, 2017, 19, 226-236.	7.1	63
35	Comparison of the performances of cardiac troponins, including sensitive assays, and copeptin in the diagnostic of acute myocardial infarction and long-term prognosis between women and men. American Heart Journal, 2013, 166, 30-37.	2.7	62
36	High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2019, 65, 893-904.	3.2	59

#	Article	IF	CITATIONS
37	Combining High-Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2018, 138, 989-999.	1.6	56
38	Direct Comparison of the 0/1h and 0/3h Algorithms for Early Rule-Out of Acute Myocardial Infarction. Circulation, 2018, 137, 2536-2538.	1.6	48
39	Accelerated diagnostic protocol using high-sensitivity cardiac troponin T in acute chest pain patients. International Journal of Cardiology, 2015, 184, 208-215.	1.7	46
40	Incidence of major adverse cardiac events following non-cardiac surgery. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 550-558.	1.0	46
41	Comparison of fourteen rule-out strategies for acute myocardial infarction. International Journal of Cardiology, 2019, 283, 41-47.	1.7	45
42	Incremental value of copeptin to highly sensitive cardiac Troponin I for rapid rule-out of myocardial infarction. International Journal of Cardiology, 2015, 190, 170-176.	1.7	44
43	Early Diagnosis of Myocardial Infarction Using Absolute and Relative Changes in Cardiac Troponin Concentrations. American Journal of Medicine, 2013, 126, 781-788.e2.	1.5	43
44	Comprehensive biomarker profiling in patients with obstructive sleep apnea. Clinical Biochemistry, 2015, 48, 340-346.	1.9	42
45	Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart, 2019, 105, 1423-1431.	2.9	42
46	Clinical Use of a New High-Sensitivity Cardiac Troponin I Assay in Patients with Suspected Myocardial Infarction. Clinical Chemistry, 2019, 65, 1426-1436.	3.2	41
47	Normal presenting levels of high-sensitivity troponin and myocardial infarction. Heart, 2013, 99, 1567-1572.	2.9	40
48	External Validation of the MEESSI Acute Heart Failure Risk Score. Annals of Internal Medicine, 2019, 170, 248.	3.9	40
49	Clinical Utility of Procalcitonin in the Diagnosis of Pneumonia. Clinical Chemistry, 2019, 65, 1532-1542.	3.2	37
50	Two-Hour Algorithm for Rapid Triage of Suspected Acute Myocardial Infarction Using a High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2019, 65, 1437-1447.	3.2	36
51	Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clinical Research in Cardiology, 2017, 106, 457-467.	3.3	35
52	Direct Comparison of 2 Rule-Out Strategies for Acute Myocardial Infarction: 2-h Accelerated Diagnostic Protocol vs 2-h Algorithm. Clinical Chemistry, 2017, 63, 1227-1236.	3.2	35
53	BNP but Not s-cTnln Is Associated with Cardioembolic Aetiology and Predicts Short and Long Term Prognosis after Cerebrovascular Events. PLoS ONE, 2014, 9, e102704.	2.5	32
54	Early rule-out and rule-in of myocardial infarction using sensitive cardiac Troponin I. International Journal of Cardiology, 2015, 195, 163-170.	1.7	31

#	Article	IF	CITATIONS
55	Predicting Major Adverse Events in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 842-854.	2.8	28
56	Association between self-reported functional capacity and major adverse cardiac events in patients at elevated risk undergoing noncardiac surgery: a prospective diagnostic cohort study. British Journal of Anaesthesia, 2021, 126, 102-110.	3.4	28
57	Serial changes in high-sensitivity cardiac troponin I in the early diagnosis of acute myocardial infarction. International Journal of Cardiology, 2013, 168, 4103-4110.	1.7	27
58	Prospective validation of current quantitative electrocardiographic criteria for ST-elevation myocardial infarction. International Journal of Cardiology, 2019, 292, 1-12.	1.7	27
59	Circadian rhythm of cardiac troponin I and its clinical impact on the diagnostic accuracy for acute myocardial infarction. International Journal of Cardiology, 2018, 270, 14-20.	1.7	25
60	Diagnosis of acute myocardial infarction in the presence of left bundle branch block. Heart, 2019, 105, 1559-1567.	2.9	24
61	Cardiovascular Biomarkers in the Early Discrimination of Type 2 Myocardial Infarction. JAMA Cardiology, 2021, 6, 771.	6.1	24
62	Incremental value of copeptin in suspected acute myocardial infarction very early after symptom onset. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 407-415.	1.0	23
63	Prevalence, characteristics and outcome of non-cardiac chest pain and elevated copeptin levels. Heart, 2014, 100, 1708-1714.	2.9	22
64	Consideration of high-sensitivity troponin values below the 99th percentile at presentation: Does it improve diagnostic accuracy?. International Journal of Cardiology, 2013, 168, 3752-3757.	1.7	20
65	Prediction of mortality using quantification of renal function in acute heart failure. International Journal of Cardiology, 2015, 201, 650-657.	1.7	20
66	Clinical impact of the 2010–2012 low-end shift of high-sensitivity cardiac troponin T. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 399-408.	1.0	20
67	How acute changes in cardiac troponin concentrations help to handle the challenges posed by troponin elevations in non-ACS-patients. Clinical Biochemistry, 2015, 48, 218-222.	1.9	18
68	An algorithm for rule-in and rule-out of acute myocardial infarction using a novel troponin I assay. Heart, 2017, 103, 125-131.	2.9	18
69	Incremental diagnostic and prognostic value of the QRS-T angle, a 12-lead ECG marker quantifying heterogeneity of depolarization and repolarization, in patients with suspected non-ST-elevation myocardial infarction. International Journal of Cardiology, 2019, 277, 8-15.	1.7	18
70	How to best use high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Clinical Biochemistry, 2018, 53, 143-155.	1.9	17
71	Design and rationale of the COVID-19 Critical Care Consortium international, multicentre, observational study. BMJ Open, 2020, 10, e041417.	1.9	17
72	Diagnostic and prognostic values of the V-index, a novel ECG marker quantifying spatial heterogeneity of ventricular repolarization, in patients with symptoms suggestive of non-ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 236, 23-29.	1.7	16

#	Article	IF	CITATIONS
73	Gender-specific uncertainties in the diagnosis of acute coronary syndrome. Clinical Research in Cardiology, 2017, 106, 28-37.	3.3	16
74	Prohormones in the Early Diagnosis of Cardiac Syncope. Journal of the American Heart Association, 2017, 6, .	3.7	16
75	Diagnostic and Prognostic Utility of Circulating Cytochrome <i>c</i> in Acute Myocardial Infarction. Circulation Research, 2016, 119, 1339-1346.	4.5	15
76	Effect of the FDA Regulatory Approach on the 0/1-h Algorithm for Rapid Diagnosis of MI. Journal of the American College of Cardiology, 2017, 70, 1532-1534.	2.8	15
77	Optimizing Early Rule-Out Strategies for Acute Myocardial Infarction: Utility of 1-Hour Copeptin. Clinical Chemistry, 2015, 61, 1466-1474.	3.2	14
78	Effect of a Proposed Modification of the Type 1 and Type 2 Myocardial Infarction Definition on Incidence and Prognosis. Circulation, 2020, 142, 2083-2085.	1.6	14
79	How accurate is clinical assessment of neck veins in the estimation of central venous pressure in acute heart failure? Insights from a prospective study. European Journal of Heart Failure, 2018, 20, 1160-1162.	7.1	13
80	Combining high-sensitivity cardiac troponin and B-type natriuretic peptide in the detection of inducible myocardial ischemia. Clinical Biochemistry, 2018, 52, 33-40.	1.9	13
81	Diagnostic Accuracy of a High-Sensitivity Cardiac Troponin Assay with a Single Serum Test in the Emergency Department. Clinical Chemistry, 2019, 65, 1006-1014.	3.2	13
82	The discovery of biological subphenotypes in ARDS: a novel approach to targeted medicine?. Journal of Intensive Care, 2021, 9, 14.	2.9	13
83	Diagnostic and prognostic value of QRS duration and QTc interval in patients with suspected myocardial infarction. Cardiology Journal, 2018, 25, 601-610.	1.2	13
84	Characterizing preclinical subâ€phenotypic models of acute respiratory distress syndrome: An experimental ovine study. Physiological Reports, 2021, 9, e15048.	1.7	13
85	Weather and risk of ST-elevation myocardial infarction revisited: Impact on young women. PLoS ONE, 2018, 13, e0195602.	2.5	12
86	Characteristics and Outcomes of Type 2 Myocardial Infarction. JAMA Cardiology, 2022, 7, 427.	6.1	12
87	Relative hypochromia and mortality in acute heart failure. International Journal of Cardiology, 2019, 286, 104-110.	1.7	11
88	Direct comparison of high-sensitivity cardiac troponin T and I in the early differentiation of type 1 vs. type 2 myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 62-74.	1.0	11
89	Coagulation Dysfunction in Acute Respiratory Distress Syndrome and Its Potential Impact in Inflammatory Subphenotypes. Frontiers in Medicine, 2021, 8, 723217.	2.6	11
90	Diagnostic and prognostic value of autoantibodies antiâ€apolipoprotein Aâ€1 and antiâ€phosphorylcholine in acute nonâ€ <scp>ST</scp> elevation myocardial infarction. European Journal of Clinical Investigation, 2015, 45, 369-379.	3.4	10

KARIN WILDI

#	Article	IF	CITATIONS
91	Prospective validation of Nâ€terminal pro Bâ€type natriuretic peptide cutâ€off concentrations for the diagnosis of acute heart failure. European Journal of Heart Failure, 2019, 21, 813-815.	7.1	10
92	Utility of C-terminal Proendothelin in the Early Diagnosis and Risk Stratification of Patients With Suspected Acute Myocardial Infarction. Canadian Journal of Cardiology, 2014, 30, 195-203.	1.7	9
93	Cardiomyocyte injury induced by hemodynamic cardiac stress: Differential release of cardiac biomarkers. Clinical Biochemistry, 2015, 48, 1225-1229.	1.9	9
94	Diagnostic value of the cardiac electrical biomarker, a novel <scp>ECG</scp> marker indicating myocardial injury, in patients with symptoms suggestive of nonâ€ <scp>ST</scp> â€elevation myocardial infarction. Annals of Noninvasive Electrocardiology, 2018, 23, e12538.	1.1	9
95	Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. American Heart Journal, 2021, 242, 132-137.	2.7	9
96	Effects of hemolysis on the diagnostic accuracy of cardiac troponin I for the diagnosis of myocardial infarction. International Journal of Cardiology, 2015, 187, 313-315.	1.7	8
97	Diagnostic and Prognostic Value of Lead aVR During Exercise Testing in Patients Suspected of Having Myocardial Ischemia. American Journal of Cardiology, 2017, 119, 959-966.	1.6	8
98	Influence of reninâ€angiotensinâ€aldosterone system inhibitors on plasma levels of angiotensinâ€converting enzyme 2. ESC Heart Failure, 2021, 8, 1717-1721.	3.1	8
99	Uric acid for diagnosis and risk stratification in suspected myocardial infarction. European Journal of Clinical Investigation, 2013, 43, 174-182.	3.4	7
100	¿Qué deben saber los cardiólogos sobre la copeptina?. Revista Espanola De Cardiologia, 2014, 67, 519-521.	1.2	7
101	Diagnostic value of ST-segment deviations during cardiac exercise stress testing: Systematic comparison of different ECG leads and time-points. International Journal of Cardiology, 2017, 238, 166-172.	1.7	7
102	Complement activation products in acute heart failure: Potential role in pathophysiology, responses to treatment and impacts on long-term survival. European Heart Journal: Acute Cardiovascular Care, 2018, 7, 348-357.	1.0	7
103	Early Diagnosis of Myocardial Infarction in Patients With a History of Coronary Artery Bypass Grafting. Journal of the American College of Cardiology, 2019, 74, 587-589.	2.8	7
104	Predicting Acute Myocardial Infarction with a Single Blood Draw. Clinical Chemistry, 2019, 65, 437-450.	3.2	7
105	Growth differentiation factor-15 and all-cause mortality in patients with suspected myocardial infarction. International Journal of Cardiology, 2019, 292, 241-245.	1.7	7
106	Inflammatory Biomarkers and Clinical Judgment in the Emergency Diagnosis of Urgent Abdominal Pain. Clinical Chemistry, 2019, 65, 302-312.	3.2	7
107	What Cardiologists Should Know About Copeptin. Revista Espanola De Cardiologia (English Ed), 2014, 67, 519-521.	0.6	6
108	Patient- and procedure-related factors in the pathophysiology of perioperative myocardial infarction/injury. International Journal of Cardiology, 2022, 353, 15-21.	1.7	6

#	Article	IF	CITATIONS
109	Incidence and timing of serious arrhythmias after early revascularization in non ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2015, 4, 359-364.	1.0	5
110	Measurement of cardiac troponin for exclusion of myocardial infarction. Lancet, The, 2016, 387, 2288.	13.7	5
111	Effect of Acute Coronary Syndrome Probability on Diagnostic and Prognostic Performance of High-Sensitivity Cardiac Troponin. Clinical Chemistry, 2018, 64, 515-525.	3.2	5
112	Early kinetics of cardiac troponin in suspected acute myocardial infarction. Revista Espanola De Cardiologia (English Ed), 2021, 74, 502-509.	0.6	5
113	0/2 h-Algorithm for Rapid Triage of Suspected Myocardial Infarction Using a Novel High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2022, 68, 303-312.	3.2	5
114	External validation of the clinical chemistry score. Clinical Biochemistry, 2021, 91, 16-25.	1.9	5
115	Incidence and Predictors of Cardiomyocyte Injury in Elective Coronary Angiography. American Journal of Medicine, 2016, 129, 537.e1-537.e8.	1.5	4
116	An Ovine Model of Hemorrhagic Shock and Resuscitation, to Assess Recovery of Tissue Oxygen Delivery and Oxygen Debt, and Inform Patient Blood Management. Shock, 2021, 56, 1080-1091.	2.1	4
117	An innovative ovine model of severe cardiopulmonary failure supported by veno-arterial extracorporeal membrane oxygenation. Scientific Reports, 2021, 11, 20458.	3.3	4
118	A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 325-335.	1.0	4
119	Hockey Games and the Incidence of ST-Elevation Myocardial Infarction. Canadian Journal of Cardiology, 2018, 34, 744-751.	1.7	3
120	Impact of Food and Drug Administration Regulatory Approach on the 0/2-Hour Algorithm for Rapid Triage of Suspected Myocardial Infarction. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e005188.	2.2	3
121	Diagnostic and prognostic value of ST-segment deviation scores in suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 857-868.	1.0	3
122	External Validation and Extension of a Clinical Score for the Discrimination of Type 2 Myocardial Infarction. Journal of Clinical Medicine, 2021, 10, 1264.	2.4	3
123	Optimising the early rule-out and rule-in of myocardial infarction using biomarkers. Cardiovascular Medicine(Switzerland), 0, , .	0.0	3
124	Response by Kaier et al to Letter Regarding Article, "Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction― Circulation, 2018, 138, 544-545.	1.6	2
125	External Validation of the No Objective Testing Rules in Acute Chest Pain. Journal of the American Heart Association, 2021, 10, e020031.	3.7	2
126	Cinética temprana de troponina en pacientes con sospecha de infarto agudo de miocardio. Revista Espanola De Cardiologia, 2021, 74, 502-509.	1.2	2

#	Article	IF	CITATIONS
127	Design and Rationale of a Prospective International Follow-Up Study on Intensive Care Survivors of COVID-19: The Long-Term Impact in Intensive Care Survivors of Coronavirus Disease-19–AFTERCOR. Frontiers in Medicine, 2021, 8, 738086.	2.6	2
128	Association of Previous Myocardial Infarction and Time to Presentation With Suspected Acute Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e017829.	3.7	2
129	Clinical presentation of patients with prior coronary artery bypass grafting and suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 746-755.	1.0	2
130	Validation of Messenger Ribonucleic Acid Markers Differentiating Among Human Acute Respiratory Distress Syndrome Subgroups in an Ovine Model of Acute Respiratory Distress Syndrome Phenotypes. Frontiers in Medicine, 0, 9, .	2.6	2
131	Validation of the Novel European Society of Cardiology 0/2-hour Algorithm Using Hs-cTnT in the Early Diagnosis of Myocardial Infarction. American Journal of Cardiology, 2021, 154, 128-130.	1.6	1
132	Recovery of organ-specific tissue oxygen delivery at restrictive transfusion thresholds after fluid treatment in ovine haemorrhagic shock. Intensive Care Medicine Experimental, 2022, 10, 12.	1.9	1
133	A clinically relevant sheep model of orthotopic heart transplantation 24Âh after donor brainstem death. Intensive Care Medicine Experimental, 2021, 9, 60.	1.9	1
134	Differential Protein Expression among Two Different Ovine ARDS Phenotypes—A Preclinical Randomized Study. Metabolites, 2022, 12, 655.	2.9	1
135	Accuracy of very low concentration of cTn, below the 99th, for the diagnosis of acute myocardial infarction: Comments about Lippi's and coll. letter. International Journal of Cardiology, 2014, 171, e13.	1.7	0
136	Hypothermic Ex Vivo Perfusion of Donor Hearts can Safely Preserve Postâ€ŧransplant Cardiac Function in Sheep for 8 Hours. FASEB Journal, 2022, 36, .	0.5	0