Vincent A A Jansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5514998/publications.pdf

Version: 2024-02-01

101 papers 8,451 citations

45 h-index 88 g-index

104 all docs

104 docs citations

times ranked

104

8531 citing authors

#	Article	IF	CITATIONS
1	The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. American Naturalist, 2021, 198, 473-488.	2.1	5
2	Between a rock and a hard place: adaptive sensing and siteâ€specific dispersal. Ecology Letters, 2020, 23, 1370-1379.	6.4	9
3	PRDM9 and the evolution of recombination hotspots. Theoretical Population Biology, 2019, 126, 19-32.	1.1	12
4	Stable cycling in quasi-linkage equilibrium: Fluctuating dynamics under gene conversion and selection. Journal of Theoretical Biology, 2019, 477, 84-95.	1.7	0
5	Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual <i>Aethionema arabicum</i> (Brassicaceae). New Phytologist, 2019, 221, 1434-1446.	7. 3	38
6	How humans transmit language: horizontal transmission matches word frequencies among peers on Twitter. Journal of the Royal Society Interface, 2018, 15, 20170738.	3.4	6
7	Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 2017, 1, 1308-1316.	7.8	123
8	The evolution of sex-specific virulence in infectious diseases. Nature Communications, 2016, 7, 13849.	12.8	49
9	Population structure and associated phenotypes of Salmonella enterica serovars Derby and Mbandaka overlap with host range. BMC Microbiology, 2016, 16, 15.	3.3	41
10	Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection. Journal of Theoretical Biology, 2016, 388, 61-71.	1.7	15
11	Resurgent Insurgents: Quantitative Research Into Jihadists Who Get Suspended but Return on Twitter. Journal of Terrorism Research, 2016, 7, 1.	0.8	19
12	Temperature and Oxygen Dependent Metabolite Utilization by Salmonella enterica Serovars Derby and Mbandaka. PLoS ONE, 2015, 10, e0120450.	2.5	7
13	Five challenges in evolution and infectious diseases. Epidemics, 2015, 10, 40-44.	3.0	38
14	Twitter users change word usage according to conversation-partner social identity. Social Networks, 2015, 40, 84-89.	2.1	42
15	Protection Versus Pathology in Aviremic and High Viral Load HIV-2 Infection—The Pivotal Role of Immune Activation and T-cell Kinetics. Journal of Infectious Diseases, 2014, 210, 752-761.	4.0	15
16	Ebola: the power of behaviour change. Nature, 2014, 515, 492-492.	27.8	27
17	SPI-23 of S. Derby: Role in Adherence and Invasion of Porcine Tissues. PLoS ONE, 2014, 9, e107857.	2.5	31
18	Word usage mirrors community structure in the online social network Twitter. EPJ Data Science, 2013, 2, .	2.8	34

#	Article	IF	CITATIONS
19	Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics, 2013, 14, 365.	2.8	45
20	Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16, 1463-1469.	6.4	175
21	A generalized functional response for predators that switch between multiple prey species. Journal of Theoretical Biology, 2013, 328, 89-98.	1.7	56
22	Comment on "Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity― Science, 2012, 335, 918-918.	12.6	84
23	Models in the management of animal diseases - P. Willeberg (Editor). Revue Scientifique et Technique–Office International Des Epizooties30, 381—643. World Organisation for Animal Health, Paris. 2011. ISBN 978-92-9044-836-5. Journal of Helminthology, 2012, 86, 386-386.	1.0	0
24	An evolutionary mechanism for diversity in siderophoreâ€producing bacteria. Ecology Letters, 2012, 15, 119-125.	6.4	67
25	On Kin and Group Selection, and the Haystack Model. , 2011, , 139-157.		1
26	Evolution in structured populations: beyond the kin versus group debate. Trends in Ecology and Evolution, 2011, 26, 193-201.	8.7	71
27	Stability in flux: community structure in dynamic networks. Journal of the Royal Society Interface, 2011, 8, 1031-1040.	3.4	27
28	Variation in individual walking behavior creates the impression of a Lévy flight. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8704-8707.	7.1	116
29	Evolutionary consequences of a search image. Theoretical Population Biology, 2010, 77, 49-55.	1.1	4
30	Endemic disease, awareness, and local behavioural response. Journal of Theoretical Biology, 2010, 264, 501-509.	1.7	192
31	Evidence for intermittency and a truncated power law from highly resolved aphid movement data. Journal of the Royal Society Interface, 2010, 7, 199-208.	3.4	53
32	The impact of clonal mixing on the evolution of social behaviour in aphids. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1651-1657.	2.6	10
33	Interacting epidemics on overlay networks. Physical Review E, 2010, 81, 036118.	2.1	143
34	Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of the Royal Society Interface, 2010, 7, 1247-1256.	3.4	941
35	The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6872-6877.	7.1	831
36	Quantitative Models of In Vitro Bacteriophage–Host Dynamics and Their Application to Phage Therapy. PLoS Pathogens, 2009, 5, e1000253.	4.7	168

3

#	Article	lF	CITATIONS
37	TO AGE, TO DIE: PARITY, EVOLUTIONARY TRACKING AND COLE'S PARADOX. Evolution; International Journal of Organic Evolution, 2009, 63, 1498-1507.	2.3	22
38	Density-dependent dispersal may explain the mid-season crash in some aphid populations. Population Ecology, 2008, 50, 285-292.	1.2	13
39	High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature, 2008, 452, 84-87.	27.8	102
40	Competition between cryptic species explains variations in rates of lineage evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12382-12386.	7.1	39
41	Stochastic spread of <i>Wolbachia </i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2769-2776.	2.6	76
42	Ant semiochemicals limit apterous aphid dispersal. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3127-3131.	2.6	36
43	HOW POPULATION DYNAMICS SHAPE THE FUNCTIONAL RESPONSE IN A ONE-PREDATOR–TWO-PREY SYSTEM. Ecology, 2007, 88, 1571-1581.	3.2	88
44	THE EVOLUTION OF DISPERSAL IN A LEVINS' TYPE METAPOPULATION MODEL. Evolution; International Journal of Organic Evolution, 2007, 61, 2386-2397.	2.3	26
45	Kinds of kindness: classifying the causes of altruism and cooperation. Journal of Evolutionary Biology, 2006, 19, 1377-1379.	1.7	10
46	Altruism through beard chromodynamics. Nature, 2006, 440, 663-666.	27.8	326
47	The estimation of dispersal rates using the covariance of local populations. Ecological Modelling, 2006, 196, 434-446.	2.5	6
48	Spatial models of virus-immune dynamics. Journal of Theoretical Biology, 2005, 233, 221-236.	1.7	104
49	Contrasting B cell- and T cell-based protective vaccines. Journal of Theoretical Biology, 2005, 234, 39-48.	1.7	10
50	The evolution of stability in a competitive system. Journal of Theoretical Biology, 2005, 236, 208-215.	1.7	7
51	Statistics of infections with diversity in the pathogenicity. Biophysical Chemistry, 2005, 115, 181-185.	2.8	4
52	Global Persistence Despite Local Extinction in Acarine Predatorâ€Prey Systems: Lessons From Experimental and Mathematical Exercises. Advances in Ecological Research, 2005, , 183-220.	2.7	17
53	ECOLOGY: Making Sense of Evolution in an Uncertain World. Science, 2005, 309, 2005-2007.	12.6	18
54	Phage variation: understanding the behaviour of an accidental pathogen. Trends in Microbiology, 2005, 13, 563-565.	7.7	24

#	Article	IF	CITATIONS
55	Diversity in pathogenicity can cause outbreaks of meningococcal disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10229-10234.	7.1	55
56	Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 2004, 73, 585-598.	2.8	557
57	Life History Trade-Offs Assemble Ecological Guilds. Science, 2004, 306, 111-114.	12.6	122
58	Prion Kinetics. Biophysical Journal, 2004, 87, 728.	0.5	4
59	Spatiotemporal dynamics of epidemics: synchrony in metapopulation models. Mathematical Biosciences, 2004, 188, 1-16.	1.9	116
60	Evolution towards criticality in an epidemiological model for meningococcal disease. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 317, 87-96.	2.1	24
61	Meningitis, pathogenicity near criticality: the epidemiology of meningococcal disease as a model for accidental pathogens. Journal of Theoretical Biology, 2003, 222, 347-359.	1.7	30
62	A dynamical perspective of CTL cross-priming and regulation: implications for cancer immunology. Immunology Letters, 2003, 86, 213-227.	2.5	21
63	Complexity and stability revisited. Ecology Letters, 2003, 6, 498-502.	6.4	72
64	Pharmacokinetic Principles of Bacteriophage Therapy. Clinical Pharmacokinetics, 2003, 42, 315-325.	3.5	166
65	Common language or Tower of Babel? On the evolutionary dynamics of signals and their meanings. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 69-76.	2.6	46
66	Measles Outbreaks in a Population with Declining Vaccine Uptake. Science, 2003, 301, 804-804.	12.6	302
67	Evidence for a Phage Proliferation Threshold?. Journal of Virology, 2002, 76, 13123-13124.	3.4	25
68	Herpes viruses hedge their bets. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15234-15237.	7.1	60
69	The Evolution of Parasite Virulence, Superinfection, and Host Resistance. American Naturalist, 2002, 159, 658-669.	2.1	146
70	The Dual Role of CD4 T Helper Cells in the Infection Dynamics of HIV and Their Importance for Vaccination. Journal of Theoretical Biology, 2002, 214, 633-646.	1.7	25
71	Red Queen Dynamics of Protein Translation. Journal of Theoretical Biology, 2002, 218, 97-109.	1.7	30
72	Variability in interaction strength and implications for biodiversity. Journal of Animal Ecology, 2002, 71, 362-371.	2.8	111

#	Article	lF	CITATIONS
73	The Dynamics of Two Diffusively Coupled Predator–Prey Populations. Theoretical Population Biology, 2001, 59, 119-131.	1.1	143
74	Effector cytotoxic T lymphocyte numbers induced by vaccination should exceed levels in chronic infection for protection from HIV. Vaccine, 2001, 20, 3-6.	3.8	13
75	The measured level of prion infectivity varies in a predictable way according to the aggregation state of the infectious agent. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2001, 1535, 164-173.	3.8	25
76	Dangerous liaisons: the ecology of private interest and common good. Oikos, 2001, 95, 211-224.	2.7	68
77	Understanding Bacteriophage Therapy as a Density-dependent Kinetic Process. Journal of Theoretical Biology, 2001, 208, 37-48.	1.7	204
78	The Role of T Cell Help for Anti-viral CTL Responses. Journal of Theoretical Biology, 2001, 211, 419-432.	1.7	46
79	HOST LIFE HISTORY AND THE EVOLUTION OF PARASITE VIRULENCE. Evolution; International Journal of Organic Evolution, 2001, 55, 1056.	2.3	114
80	PERIODIC MORTALITY EVENTS IN PREDATOR–PREY SYSTEMS. Ecology, 2000, 81, 3330-3340.	3.2	16
81	Periodic Mortality Events in Predator-Prey Systems. Ecology, 2000, 81, 3330.	3.2	39
82	Designing drugs to stop the formation of prion aggregates and other amyloids. Biophysical Chemistry, 2000, 88, 47-59.	2.8	48
83	The evolution of syntactic communication. Nature, 2000, 404, 495-498.	27.8	342
84	Phage therapy: The peculiar kinetics of self-replicating pharmaceuticals. Clinical Pharmacology and Therapeutics, 2000, 68, 225-230.	4.7	179
85	Local stability analysis of spatially homogeneous solutions of multi-patch systems. Journal of Mathematical Biology, 2000, 41, 232-252.	1.9	95
86	The Role of Space in Reducing Predator–Prey Cycles. , 2000, , 183-202.		35
87	The kinetics of proteinase K digestion of linear prion polymers. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1927-1931.	2.6	11
88	Quantifying the kinetic parameters of prion replication. Biophysical Chemistry, 1999, 77, 139-152.	2.8	214
89	Evolving biodiversity. Ecology Letters, 1999, 2, 379-386.	6.4	54
90	Dynamics of Macrophage and T Cell Infection by HIV. Journal of Theoretical Biology, 1999, 196, 101-113.	1.7	74

#	Article	IF	CITATIONS
91	Phase locking: another cause of synchronicity in predator–prey systems. Trends in Ecology and Evolution, 1999, 14, 278-279.	8.7	50
92	COMPLEX DYNAMICS IN STOCHASTIC TRITROPHIC MODELS. Ecology, 1998, 79, 1039-1052.	3.2	33
93	Shaken Not Stirred: On Permanence in Ecological Communities. Theoretical Population Biology, 1998, 54, 195-201.	1.1	54
94	Populations can persist in an environment consisting of sink habitats only. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3696-3698.	7.1	92
95	Complex Dynamics in Stochastic Tritrophic Models. Ecology, 1998, 79, 1039.	3.2	1
96	An individualâ€based model for competing <i>Drosophila</i> populations. Researches on Population Ecology, 1997, 39, 215-225.	0.9	9
97	The Effects of a Pool of Dispersers on Host-parasitoid Systems. Journal of Theoretical Biology, 1997, 189, 413-425.	1.7	29
98	Evolution and population dynamics in stochastic environments. Researches on Population Ecology, 1996, 38, 165-182.	0.9	67
99	Outbreaks of Colony-Forming Pests in Tri-Trophic Systems: Consequences for Pest Control and the Evolution of Pesticide Resistance. Oikos, 1995, 74, 172.	2.7	10
100	Effects of dispersal in a tri-trophic metapopulation model. Journal of Mathematical Biology, 1995, 34, 195-224.	1.9	18
101	Prey dispersal and predator persistence. Experimental and Applied Acarology, 1992, 14, 215-231.	1.6	23