Pascal Del'Haye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5514740/publications.pdf

Version: 2024-02-01

172457 223800 6,111 129 29 46 citations g-index h-index papers 130 130 130 3489 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450, 1214-1217.	27.8	1,686
2	Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters, 2006, 97, 243905.	7.8	503
3	Micro-combs: A novel generation of optical sources. Physics Reports, 2018, 729, 1-81.	25.6	448
4	Microresonator frequency comb optical clock. Optica, 2014, 1, 10.	9.3	367
5	Soliton crystals in Kerr resonators. Nature Photonics, 2017, 11, 671-676.	31.4	300
6	Octave Spanning Tunable Frequency Comb from a Microresonator. Physical Review Letters, 2011, 107, 063901.	7.8	289
7	Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 2013, 4, 1345.	12.8	250
8	Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photonics, 2009, 3, 529-533.	31.4	231
9	Full Stabilization of a Microresonator-Based Optical Frequency Comb. Physical Review Letters, 2008, 101, 053903.	7.8	204
10	Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nature Photonics, 2016, 10, 516-520.	31.4	133
11	Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica, 2018, 5, 279.	9.3	131
12	Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 2019, 6, 206.	9.3	120
13	Electronic synthesis of light. Optica, 2017, 4, 406.	9.3	115
14	Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator. Scientific Reports, 2017, 7, 43142.	3.3	109
15	Hybrid Electro-Optically Modulated Microcombs. Physical Review Letters, 2012, 109, 263901.	7.8	107
16	Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs. Physical Review Letters, 2014, 112, 043905.	7.8	107
17	Broadband dispersion-engineered microresonator on a chip. Nature Photonics, 2016, 10, 316-320.	31.4	79
18	Parametric seeding of a microresonator optical frequency comb. Optics Express, 2013, 21, 17615.	3.4	77

#	Article	IF	CITATIONS
19	Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Applied Physics Letters, 2013, 102, .	3.3	74
20	Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Communications, 2015, 6, 5668.	12.8	72
21	Terahertz wave generation using a soliton microcomb. Optics Express, 2019, 27, 35257.	3.4	67
22	Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Optics Letters, 2007, 32, 2200.	3.3	63
23	Universal symmetry-breaking dynamics for the Kerr interaction of counterpropagating light in dielectric ring resonators. Physical Review A, 2018, 98, .	2.5	54
24	Spectral extension and synchronization of microcombs in a single microresonator. Nature Communications, 2020, 11, 6384.	12.8	49
25	Mechanical Control of a Microrod-Resonator Optical Frequency Comb. Physical Review X, 2013, 3, .	8.9	48
26	Roadmap on ultrafast optics. Journal of Optics (United Kingdom), 2016, 18, 093006.	2.2	46
27	Effects of self- and cross-phase modulation on the spontaneous symmetry breaking of light in ring resonators. Physical Review A, 2020, 101, .	2.5	39
28	Observation of Brillouin optomechanical strong coupling with an 11  GHz mechanical mode. Optica, 2019, 6, 7.	9.3	38
29	Self-Switching Kerr Oscillations of Counterpropagating Light in Microresonators. Physical Review Letters, 2021, 126, 043901.	7.8	32
30	Dark-Bright Soliton Bound States in a Microresonator. Physical Review Letters, 2022, 128, 033901.	7.8	27
31	Interplay of Polarization and Time-Reversal Symmetry Breaking in Synchronously Pumped Ring Resonators. Physical Review Letters, 2019, 122, 013905.	7.8	26
32	Logic Gates Based on Interaction of Counterpropagating Light in Microresonators. Journal of Lightwave Technology, 2020, 38, 1414-1419.	4.6	25
33	Coherent suppression of backscattering in optical microresonators. Light: Science and Applications, 2020, 9, 204.	16.6	24
34	A Kerr polarization controller. Nature Communications, 2022, 13, 398.	12.8	23
35	Optical memories and switching dynamics of counterpropagating light states in microresonators. Optics Express, 2021, 29, 2193.	3.4	19
36	Phase and coherence of optical microresonator frequency combs. Physical Review A, 2014, 89, .	2.5	17

#	Article	IF	CITATIONS
37	Kerr-Nonlinearity-Induced Mode-Splitting in Optical Microresonators. Physical Review Letters, 2020, 124, 223901.	7.8	17
38	Nonlinear enhanced microresonator gyroscope. Optica, 2021, 8, 1219.	9.3	17
39	Self-synchronization phenomena in the Lugiato-Lefever equation. Physical Review A, 2017, 96, .	2.5	13
40	Thermo-optical pulsing in a microresonator filtered fiber-laser: a route towards all-optical control and synchronization. Optics Express, 2019, 27, 19242.	3.4	12
41	Optical Frequency Comb Generation in Monolithic Microresonators. Optical Science and Engineering, 2009, , 483-506.	0.1	5
42	Mid-Infrared Frequency Combs Based on Microresonators., 2011,,.		5
43	Soliton Crystals in Kerr Microresonator Frequency Combs. , 2016, , .		5
44	Dual Comb Generation in a Single Microresonator., 2017,,.		4
45	Mechanical stabilization of a microrod-resonator optical frequency comb., 2012,,.		3
46	Critical dynamics of an asymmetrically bidirectionally pumped optical microresonator. Physical Review A, 2021, 104, .	2.5	3
47	Kerr superoscillator model for microresonator frequency combs. Physical Review A, 2017, 95, .	2.5	2
48	A Nonlinear Enhanced Microresonator Gyroscope. , 2017, , .		2
49	Uniform Thin Films on Optical Fibers by Plasma-Enhanced Chemical Vapor Deposition: Fabrication, Mie Scattering Characterization, and Application to Microresonators. Journal of Lightwave Technology, 2018, 36, 5580-5586.	4.6	2
50	Octave-Spanning Tunable Frequency Combs on a Chip. , 2010, , .		2
51	Self-referencing a CW laser with efficient nonlinear optics. , 2015, , .		2
52	Full stabilization of a frequency comb generated in a monolithic microcavity. , 2008, , .		2
53	Generalized theory of optical resonator and waveguide modes and their linear and Kerr nonlinear coupling. Physical Review A, 2022, 105, .	2.5	2
54	Cooling of a micro-mechanical oscillator using radiation-pressure induced dynamical backaction. , 2007, , .		1

#	Article	IF	Citations
55	Frequency comb generation in crystalline MgF<inf>2</inf> whispering-gallery mode resonators. , $2011, \dots$		1
56	Adaptive beamforming using sequential beamspace approach., 2012,,.		1
57	Self-referencing a 10 GHz Electro-optic Comb. , 2015, , .		1
58	Stable Mode Locking of Micro Resonator Frequency Combs. , 2014, , .		1
59	Spontaneous Symmetry Breaking Based Near-Field Sensing with a Microresonator. , 2019, , .		1
60	Stabilizing multiple solitons in Kerr microresonator frequency combs., 2016,,.		1
61	Cooling of a Micro-Mechanical Oscillator Using Radiation Pressure Induced Dynamical Back-Action. , 2007, , .		1
62	Optical frequency comb generation from a monolithic micro-resonator via the Kerr nonlinearity. , 2007, , .		1
63	Frequency Comb Generation in Crystalline MgF2 Whispering-Gallery Mode Resonators. , 2011, , .		1
64	Isolators and Circulators Based on Kerr Nonreciprocity in Microresonators., 2017,,.		1
65	Logic Gates based on Interaction of Counterpropagating Light in Microresonators. , 2019, , .		1
66	Kerr nonlinearity induced optical frequency comb generation in microcavities. , 2007, , .		0
67	Kerr Nonlinearity induced Optical Frequency Comb Generation in Microcavities., 2007,,.		O
68	Kerr Nonlinearity induced Optical Frequency Comb Generation in Microcavities., 2007,,.		0
69	Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. , 2007, , .		0
70	Radiation pressure driven vibrational modes in ultra-high-Q silica microspheres. , 2007, , .		0
71	Observation of optomechanical coupling in crystalline whispering gallery mode resonators. , 2009, , .		0
72	Broadband precision spectroscopy using a scanning diode laser and a frequency comb., 2009,,.		0

#	Article	IF	Citations
73	Intermediate Infrared Raman Lasing and Four-Wave Mixing in Crystalline Whispering Gallery Mode Resonators. , 2010 , , .		0
74	Octave-spanning Tunable frequency combs on a chip. , 2010, , .		0
75	Mid-infrared frequency combs based on microresonators. , 2011, , .		0
76	Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators. , 2012, , .		0
77	Mechanical stabilization of frequency combs from laser machined microrod-resonators. , 2012, , .		0
78	Pulse-picked octave-spanning microresonator-based frequency comb for optical self-referencing. , 2013, , .		0
79	Microresonator frequency combs. , 2013, , .		0
80	Low phase-noise mid-infrared frequency combs based on microresonators. , 2013, , .		0
81	Hybrid Electro-Optic Microcombs and Frequency Domain Analysis of Modelocking in Microresonators. , 2013, , .		0
82	Pulse Picking of High Repetition Rate Frequency Combs for Generation of Octave-Spanning Spectra. , 2013, , .		0
83	Phase Measurements and Phase-Locking in Microresonator-Based Optical Frequency Combs. , 2014, , .		0
84	Measuring optical phases of Kerr frequency combs. , 2014, , .		0
85	All-optical stabilization of a microresonator frequency comb. , 2014, , .		0
86	Self-synchronization and Phase Steps in Microresonator-based Optical Frequency Combs., 2016,,.		0
87	Kerr superoscillator model for microresonator frequency combs. , 2017, , .		0
88	Critical Dynamics of a Nonlinear Enhanced Microresonator Gyroscope. , 2019, , .		0
89	All-Optical Switching in Microresonators using the Kerr Nonreciprocity. , 2019, , .		0
90	Direct Measurement of Cross-Phase Modulation in Microresonators., 2019,,.		0

#	Article	IF	CITATIONS
91	Spontaneous Symmetry Breaking, Oscillations, and Chaotic Regimes in Bidirectionally-Pumped Ring Resonators. , 2019, , .		0
92	Brillouin optomechanics in whispering-gallery-mode microresonators: From strong coupling to single-phonon addition and subtraction. , $2021, \ldots$		0
93	Optical Memory Based on Conterpropagating Light in Microresonators. , 2021, , .		0
94	More Than 34 dB Backscattering Suppression in Microresonators. , 2021, , .		0
95	Spontaneous polarization symmetry breaking of light in a microresonator. , 2021, , .		O
96	A Kerr Oscillator based on Counterpropagating Light in a Microresonator., 2021,,.		0
97	Kerr Enhancement of Optomechanics in Microresonators. , 2021, , .		0
98	>30 dB Suppression of Intrinsic Backscattering in Whispering-Gallery-Mode Microresonators. , 2021, , .		0
99	Cooling of a Micro-Mechanical Oscillator Using Radiation-Pressure Induced Dynamical Backaction. , 2007, , .		0
100	Radiation-Pressure Cooling of a Micro-Mechanical Oscillator Using Dynamical Backaction., 2007,,.		0
101	Generation of an optical frequency comb from a monolithic micro-resonator via the Kerr nonlinearity. , 2007, , .		0
102	Optical Frequency Comb Generation in HNLF Cavities. , 2008, , .		0
103	Chip scale frequency combs and their stabilization. , 2008, , .		0
104	Direct Stabilization of a Microresonator Frequency Comb at Microwave Frequencies. , 2008, , .		0
105	A chip-scale microwave repetition rate frequency comb. , 2009, , .		0
106	Precision Spectroscopy with a Scanning Diode Laser and Measurement of Microcavity Dispersion. , 2009, , .		0
107	Mid-Infrared Frequency Combs Based on Microresonators. , 2011, , .		0
108	An All-Optical Resonator Stabilization Scheme with Laser Machined SiO2 Microresonators. , 2012, , .		0

#	Article	IF	Citations
109	Coherent control of microresonator comb generation via parametric-gain seeding. , 2013, , .		O
110	Towards a Self-Referenced and Frequency-Stabilized Microresonator Frequency Comb., 2013,,.		0
111	Coherent Frequency Multiplication from 10 GHz to 140 THz. , 2014, , .		0
112	Generating 100+ GHz repetition rate soliton pulse trains with a Kerr microcavity., 2016,,.		0
113	Dispersion engineered high-Q resonators on a chip. , 2016, , .		0
114	Kerr Superoscillator Model for Microresonator Frequency Combs. , 2017, , .		0
115	Spontaneous Symmetry Breaking of Counterpropagating Light in Microresonators. , 2017, , .		0
116	A Diode Made of Light $\hat{a} \in ``Optical Isolators and Circulators Based on the Intrinsic Nonreciprocity of the Kerr Effect. , 2018, , .$		0
117	Switching Dynamics of Counter-propagating Light States in Microresonators. , 2018, , .		0
118	Interaction of Counter-Propagating Light in Microresonators: Theoretical Model and Oscillatory Regimes. , 2018, , .		0
119	Temporal and Polarization Symmetry Breaking in Ring Resonators. , 2018, , .		0
120	Microwatt-Level Soliton Frequency Comb Generation in Microresonators Using an Auxiliary Laser. , 2019, , .		0
121	Microresonator Logic Gates with Counterpropagating Light. , 2020, , .		0
122	Ultrastable THz Wave Generation using a Soliton Microcomb. , 2020, , .		0
123	Suppressing Intrinsic Backscattering in Ultra-High-Q Optical Microresonators. , 2020, , .		0
124	Spectrally Extended and Synchronized Microcombs with an Auxiliary Pump Laser., 2020,,.		0
125	Splitting Microresonator Modes with the Kerr-Nonlinearity. , 2020, , .		0
126	Spectral Extension of Microcombs with Two Seed Lasers. , 2021, , .		0

#	Article	IF	CITATIONS
127	Kerr Logic Gates based on Counterpropagating Light in Microresonators. , 2021, , .		O
128	Kerr Switch and Memory Based on Counterpropagating Light in Microresonators. , 2021, , .		O
129	Brillouin optomechanics: from strong coupling to single-phonon-level operations. , 2022, , .		O