
Irina N Leonova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wheat genome structure: translocations during the course of polyploidization. Functional and Integrative Genomics, 2006, 6, 71-80.	3.5	60
2	A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204, 91-101.	1.2	43
3	Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Molecular Breeding, 2013, 31, 123-136.	2.1	37
4	Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biology, 2016, 16, 8.	3.6	33
5	Detection of quantitative trait loci for leaf rust resistance in wheat––T. timopheevii/T. tauschii introgression lines. Euphytica, 2007, 155, 79-86.	1.2	32
6	Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breeding, 2003, 122, 209-212.	1.9	27
7	Title is missing!. Russian Journal of Genetics, 2002, 38, 1397-1403.	0.6	24
8	Microsatellite monitoring of recombination around the Vrn -B1 locus of wheat during early backcross breeding. Plant Breeding, 2003, 122, 116-119.	1.9	24
9	Genome-Wide Association Study of Tan Spot Resistance in a Hexaploid Wheat Collection From Kazakhstan. Frontiers in Genetics, 2020, 11, 581214.	2.3	24
10	Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley. Euphytica, 2011, 179, 333-341.	1.2	23
11	Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russian Journal of Genetics, 2008, 44, 1431-1437.	0.6	21
12	Diversification of the Duplicated F3h Genes in Triticeae. Journal of Molecular Evolution, 2013, 76, 261-266.	1.8	20
13	Multiple allelism in theVrn-B1locus of common wheat. Cereal Research Communications, 2011, 39, 12-21.	1.6	18
14	Comparative study of insecticide susceptibility and activities of detoxification enzymes in larvae and adults of cotton bollworm,Heliothis armigera. Archives of Insect Biochemistry and Physiology, 1996, 32, 157-172.	1.5	17
15	Molecular Analysis of the Triticale Lines with Different Vrn Gene Systems Using Microsatellite Markers and Hybridization In Situ. Russian Journal of Genetics, 2005, 41, 1014-1020.	0.6	17
16	Genome-wide association study of leaf rust resistance in Russian spring wheat varieties. BMC Plant Biology, 2020, 20, 135.	3.6	17
17	Microsatellite mapping of a leaf rust resistance gene transferred to common wheat from <i>Triticum timopheevii</i> . Cereal Research Communications, 2010, 38, 211-219.	1.6	15
18	Molecular markers: Implementation in crop plant breeding for identification, introgression and gene pyramiding. Russian Journal of Genetics: Applied Research, 2013, 3, 464-473.	0.4	15

Irina N Leonova

#	Article	IF	CITATIONS
19	Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breeding, 2004, 123, 93-95.	1.9	14
20	Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm. International Journal of Molecular Sciences, 2020, 21, 4706.	4.1	13
21	Comparative cytological and molecular analysis of common wheat introgression lines containing genetic material of Triticum timopheevii Zhuk. Russian Journal of Genetics, 2009, 45, 1428-1437.	0.6	11
22	Allelic Variation Analysis at the Vernalization Response and Photoperiod Genes in Russian Wheat Varieties Identified Two Novel Alleles of Vrn-B3. Biomolecules, 2021, 11, 1897.	4.0	11
23	Preferential elimination of chromosome 5R of rye in the progeny of 5R5D dimonosomics. Russian Journal of Genetics, 2011, 47, 942-950.	0.6	10
24	The influence of particular chromosome regions of Triticum timopheevii on the formation of resistance to diseases and quantitative traits in common wheat. Russian Journal of Genetics: Applied Research, 2012, 2, 330-343.	0.4	9
25	Comparative characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions. Russian Journal of Genetics, 2013, 49, 1112-1118.	0.6	9
26	Identification of QTLs for Grain Protein Content in Russian Spring Wheat Varieties. Plants, 2022, 11, 437.	3.5	9
27	Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of TRITICUM AESTIVUM with T. kiharae. BMC Plant Biology, 2020, 20, 201.	3.6	8
28	Dissection of novel candidate genes for grain texture in Russian wheat varieties. Plant Molecular Biology, 2020, 104, 219-233.	3.9	8
29	Regions of Chromosome 2A of Bread Wheat (Triticum aestivum L.) Associated with Variation in Physiological and Agronomical Traits under Contrasting Water Regimes. Plants, 2021, 10, 1023.	3.5	8
30	Phytopathological screening and molecular marker analysis of wheat germplasm from Kazakhstan and CIMMYT for resistance to tan spot. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 879-886.	1.1	8
31	Life stage variations in insecticidal susceptibility and detoxification capacity of the beet webworm, Pyrausta sticticalis L. (Lep., Pyralidae). Journal of Applied Entomology, 2004, 128, 419-425.	1.8	7
32	Interaction of the substrate analogue of cytochrome P-450 and mixed function oxidases. Biochemical Pharmacology, 1982, 31, 1993-1998.	4.4	5
33	The application of wheat microsatellite markers for the detection of interspecific variation in tetraploid <i>Aegilops</i> species with C and U genomes. Cereal Research Communications, 2009, 37, 335-343.	1.6	5
34	Change in salt tolerance of bread wheat as a result of the introgression of the genetic material of Aegilops speltoides and Triticum timopheevii. Russian Journal of Genetics: Applied Research, 2016, 6, 244-248.	0.4	5
35	PHENOTYPIC VARIABILITY OF COMMON WHEAT (Triticum aestivum L.) BREEDING LINES ON YIELD COMPONENTS UNDER ENVIRONMENTAL CONDITIONS OF WESTERN SIBERIA AND TATARSTAN. Sel'skokhozyaistvennaya Biologiya, 2021, 56, 78-91.	0.3	5
36	Molecular cytogenetic analysis of triticale and wheat lines with introgressions of the genetic material of triticeae tribe species. Russian Journal of Genetics: Applied Research, 2016, 6, 527-536.	0.4	4

Irina N Leonova

#	Article	IF	CITATIONS
37	Title is missing!. Russian Journal of Plant Physiology, 2001, 48, 377-381.	1.1	3
38	Effect of alien genomic introgressions on the osmotic stress resistance of wheat. Russian Journal of Genetics: Applied Research, 2015, 5, 168-173.	0.4	3
39	The B-, C- and S-genomic Chi genes in family Triticeae. Biologia Plantarum, 2016, 60, 279-284.	1.9	3
40	Effect of translocations from Aegilops speltoides Tausch on resistance to fungal diseases and productivity in common wheat. Russian Journal of Genetics, 2016, 52, 1253-1262.	0.6	2
41	Broadening the Genetic Diversity of Bread Wheat Using Alien Germplasm: Emphasis on Disease Resistance. , 2016, , 107-120.		2
42	Development of inter-varietal chromosome substitution lines of wheat (Triticum aestivumL.) bearing a rye genetic marker and their verification with microsatellite markers. Cereal Research Communications, 2006, 34, 973-980.	1.6	2
43	VARIABILITY OF AGRONOMICALLY IMPORTANT TRAITS IN SPRING WHEAT HYBRIDS OBTAINED BY MARKER-ASSISTED SELECTION FROM CROSSES OF WINTER WHEAT WITH SPRING WHEAT DONORS OF RESISTANCE GENES. Sel'skokhozyaistvennaya Biologiya, 2017, 52, 526-534.	0.3	2
44	Molecular diversity of common wheat introgression lines (T. aestivum/T. timopheevii). Russian Journal of Genetics: Applied Research, 2015, 5, 191-197.	0.4	1
45	Features of chromosome behavior in meiosis in common wheat lines containing genetic material of tetraploid wheat species. Russian Journal of Genetics: Applied Research, 2016, 6, 225-232.	0.4	1