
Mark C Walters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. New England Journal of Medicine, 2018, 378, 1479-1493.	27.0	525
2	Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine, 2016, 8, 360ra134.	12.4	386
3	Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood, 2017, 129, 1548-1556.	1.4	340
4	Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and β-thalassemia. Biology of Blood and Marrow Transplantation, 2003, 9, 519-528.	2.0	253
5	A trial of unrelated donor marrow transplantation for children with severe sickle cell disease. Blood, 2016, 128, 2561-2567.	1.4	174
6	Pulmonary, Gonadal, and Central Nervous System Status after Bone Marrow Transplantation for Sickle Cell Disease. Biology of Blood and Marrow Transplantation, 2010, 16, 263-272.	2.0	165
7	Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. New England Journal of Medicine, 2022, 386, 617-628.	27.0	144
8	Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study. Lancet Haematology,the, 2019, 6, e585-e596.	4.6	128
9	Indications and Results of HLA-Identical Sibling Hematopoietic Cell Transplantation for Sickle Cell Disease. Biology of Blood and Marrow Transplantation, 2016, 22, 207-211.	2.0	97
10	Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. Blood Advances, 2020, 4, 2058-2063.	5.2	93
11	Betibeglogene Autotemcel Gene Therapy for Non–β ⁰ /β ⁰ Genotype β-Thalassemia. New England Journal of Medicine, 2022, 386, 415-427.	27.0	91
12	Relationship between Mixed Donor–Recipient Chimerism and Disease Recurrence after Hematopoietic Cell Transplantation for Sickle Cell Disease. Biology of Blood and Marrow Transplantation, 2017, 23, 2178-2183.	2.0	74
13	Current Results and Future Research Priorities in Late Effects after Hematopoletic Stem Cell Transplantation for Children with Sickle Cell Disease and Thalassemia: A Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric Hematopoletic Stem Cell Transplantation. Biology of Blood and Marrow	2.0	66
14	Pransplantation, 2017, 23, 352-351. Bone marrow transplantation for adolescents and young adults with sickle cell disease: Results of a prospective multicenter pilot study. American Journal of Hematology, 2019, 94, 446-454.	4.1	56
15	Sibling Donor Cord Blood Transplantation for Thalassemia Major: Experience of the Sibling Donor Cord Blood Program. Annals of the New York Academy of Sciences, 2005, 1054, 206-213.	3.8	55
16	Related and unrelated donor transplantation for β-thalassemia major: results of an international survey. Blood Advances, 2019, 3, 2562-2570.	5.2	48
17	Clinical risks and healthcare utilization of hematopoietic cell transplantation for sickle cell disease in the USA using merged databases. Haematologica, 2017, 102, 1823-1832.	3.5	43
18	Late Effects Screening Guidelines after Hematopoietic Cell Transplantation (HCT) for Hemoglobinopathy: Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric HCT. Biology of Blood and Marrow Transplantation, 2018, 24, 1313-1321.	2.0	40

MARK C WALTERS

#	Article	IF	CITATIONS
19	Update of hematopoietic cell transplantation for sickle cell disease. Current Opinion in Hematology, 2015, 22, 227-233.	2.5	38
20	American Society of Hematology 2021 guidelines for sickle cell disease: stem cell transplantation. Blood Advances, 2021, 5, 3668-3689.	5.2	38
21	Stem Cell Therapy for Sickle Cell Disease: Transplantation and Gene Therapy. Hematology American Society of Hematology Education Program, 2005, 2005, 66-73.	2.5	30
22	Preliminary Results of a Phase 1/2 Clinical Study of Zinc Finger Nuclease-Mediated Editing of BCL11A in Autologous Hematopoietic Stem Cells for Transfusion-Dependent Beta Thalassemia. Blood, 2019, 134, 3544-3544.	1.4	29
23	Risk score to predict event-free survival after hematopoietic cell transplant for sickle cell disease. Blood, 2020, 136, 623-626.	1.4	26
24	In utero hematopoietic cell transplantation for hemoglobinopathies. Frontiers in Pharmacology, 2014, 5, 278.	3.5	25
25	Thiol/Redox Metabolomic Profiling Implicates CSH Dysregulation in Early Experimental Graft versus Host Disease (GVHD). PLoS ONE, 2014, 9, e88868.	2.5	25
26	Unrelated Donor Transplantation in Children with Thalassemia using Reduced-Intensity Conditioning: The URTH Trial. Biology of Blood and Marrow Transplantation, 2018, 24, 1216-1222.	2.0	23
27	CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells. PLoS ONE, 2019, 14, e0208237.	2.5	23
28	Current Results of Lentiglobin Gene Therapy in Patients with Severe Sickle Cell Disease Treated Under a Refined Protocol in the Phase 1 Hgb-206 Study. Blood, 2018, 132, 1026-1026.	1.4	23
29	Safety and feasibility of hematopoietic progenitor stem cell collection by mobilization with plerixafor followed by apheresis vs bone marrow harvest in patients with sickle cell disease in the multiâ€center <scp>HGB</scp> â€206 trial. American Journal of Hematology, 2020, 95, E239-E242.	4.1	22
30	High-level correction of the sickle mutation is amplified inÂvivo during erythroid differentiation. IScience, 2022, 25, 104374.	4.1	22
31	End points for sickle cell disease clinical trials: renal and cardiopulmonary, cure, and low-resource settings. Blood Advances, 2019, 3, 4002-4020.	5.2	21
32	Promise of gene therapy to treat sickle cell disease. Expert Opinion on Biological Therapy, 2018, 18, 1123-1136.	3.1	18
33	Update of Results from the Northstar Study (HGB-204): A Phase 1/2 Study of Gene Therapy for Beta-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex-Vivo with a Lentiviral Beta AT87Q-Globin Vector (LentiGlobin BB305 Drug Product). Blood, 2015, 126, 201-201.	1.4	17
34	Resolution of Sickle Cell Disease Manifestations in Patients Treated with Lentiglobin Gene Therapy: Updated Results from the Phase 1/2 Hgb-206 Group C Study. Blood, 2019, 134, 990-990.	1.4	16
35	Successful Plerixafor-Mediated Mobilization, Apheresis, and Lentiviral Vector Transduction of Hematopoietic Stem Cells in Patients with Severe Sickle Cell Disease. Blood, 2017, 130, 990-990.	1.4	16
36	Lentiglobin Gene Therapy for Patients with Transfusion-Dependent Î ² -Thalassemia (TDT): Results from the Phase 3 Northstar-2 and Northstar-3 Studies. Blood, 2018, 132, 1025-1025.	1.4	13

MARK C WALTERS

#	Article	IF	CITATIONS
37	Northstar-2: Updated Safety and Efficacy Analysis of Lentiglobin Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia and Non-β0/β0 Genotypes. Blood, 2019, 134, 3543-3543.	1.4	13
38	Preclinical Studies for Sickle Cell Disease Gene Therapy Using Bone Marrow CD34+ Cells Modified with a βAS3-Globin Lentiviral Vector. Blood, 2011, 118, 3119-3119.	1.4	13
39	Outcomes for Initial Patient Cohorts with up to 33 Months of Follow-up in the Hgb-206 Phase 1 Trial. Blood, 2018, 132, 1080-1080.	1.4	11
40	Initial Results from Study Hgb-206: A Phase 1 Study Evaluating Gene Therapy By Transplantation of Autologous CD34+ Stem Cells Transduced Ex Vivo with the Lentiglobin BB305 Lentiviral Vector in Subjects with Severe Sickle Cell Disease. Blood, 2015, 126, 3233-3233.	1.4	11
41	A booster shot to cure hemoglobinopathies. Blood, 2015, 126, 1159-1161.	1.4	10
42	Stable to improved cardiac and pulmonary function in children with high-risk sickle cell disease following haploidentical stem cell transplantation. Bone Marrow Transplantation, 2021, 56, 2221-2230.	2.4	10
43	Long-Term Clinical Outcomes of Lentiglobin Gene Therapy for Transfusion-Dependent β-Thalassemia in the Northstar (HCB-204) Study. Blood, 2019, 134, 4628-4628.	1.4	10
44	Initial Results from the Northstar Study (HGB-204): A Phase 1/2 Study of Gene Therapy for β-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral βÎʿ-T87Q -Globin Vector (LentiGlobin BB305 Drug Product). Blood, 2014, 124, 549-549.	1.4	10
45	Novel Therapeutic Approaches in Sickle Cell Disease. Hematology American Society of Hematology Education Program, 2002, 2002, 10-34.	2.5	9
46	Multicenter Investigation Of Unrelated Donor Hematopoietic Cell Transplantation (HCT) For Thalassemia Major After a Reduced Intensity Conditioning Regimen (URTH Trial). Blood, 2013, 122, 543-543.	1.4	9
47	Exploring the Drivers of Potential Clinical Benefit in Initial Patients Treated in the Hgb-206 Study of Lentiglobin for Sickle Cell Disease (SCD) Gene Therapy. Blood, 2019, 134, 2061-2061.	1.4	7
48	The Relationships between Target Gene Transduction, Engraftment of HSCs and RBC Physiology in Sickle Cell Disease Gene Therapy. Blood, 2019, 134, 206-206.	1.4	7
49	Sibling Donor Cord Blood Banking for Children with Sickle Cell Disease. Fetal and Pediatric Pathology, 2001, 20, 167-174.	0.3	5
50	CIRM Alpha Stem Cell Clinics: Collaboratively Addressing Regenerative Medicine Challenges. Cell Stem Cell, 2018, 22, 801-805.	11.1	5
51	The safety and efficacy of clofarabine in combination with high-dose cytarabine and total body irradiation myeloablative conditioning and allogeneic stem cell transplantation in children, adolescents, and young adults (CAYA) with poor-risk acute leukemia. Bone Marrow Transplantation, 2019, 54, 226-235.	2.4	5
52	Safety and Efficacy of Hematopoietic Stem Cell Remobilization with Plerixafor (Mozobil®) + G-CSF In Pediatric Patients with Malignant Disorders. Blood, 2010, 116, 2245-2245.	1.4	5
53	A Multicenter Phase II Trial of Unrelated Donor Reduced Intensity Bone Marrow Transplantation for Children with Severe Sickle Cell Disease (SCURT): Results of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0601) Study. Blood, 2015, 126, 619-619.	1.4	5
54	Reduced Intensity Conditioning for Haploidentical Bone Marrow Transplantation in Patients with Symptomatic Sickle Cell Disease: BMT CTN Protocol 1507. Blood, 2019, 134, 802-802.	1.4	5

MARK C WALTERS

#	Article	lF	CITATIONS
55	Induction of Fetal Hemoglobin by Gene Therapy. New England Journal of Medicine, 2021, 384, 284-285.	27.0	4
56	Hematopoietic Stem Cell Transplantation from HLA Identical Sibling Forsickle Cell Disease an International Survey on Behalf of Eurocord-Monacord, EBMT Paediatric Disease Working Party and CIBMTR. Blood, 2015, 126, 541-541.	1.4	4
57	Clinical Outcomes of Lentiglobin Gene Therapy for Transfusion-Dependent β-Thalassemia Following Completion of the Northstar HGB-204 Study. Blood, 2018, 132, 167-167.	1.4	3
58	A Prospective Study of G-CSF Primed Bone Marrow from Pediatric Donors as a Stem Cell Source for Allogeneic Bone Marrow Transplant: A Pediatric Blood and Marrow Transplant Consortium (PBMTC) Study Blood, 2005, 106, 1964-1964.	1.4	3
59	Related and Unrelated Donor Transplantation for β Thalassemia Major: Results of an International Survey. Blood, 2018, 132, 308-308.	1.4	1
60	Significantly Improved Long Term Health Related Quality of Life (HRQL) and Neurocognition Following Familial Haploidentical Stem Cell Transplantation (HISCT) Utilizing CD34 Enrichment and Mononuclear (CD3) Addback in High Risk Patients with Sickle Cell Disease (SCD). Blood, 2018, 132, 162-162.	1.4	1
61	Sickle marrow: double, double toil and trouble. Blood, 2020, 135, 2017-2018.	1.4	0
62	Growth after Hematopoietic Cell Transplantation for Sickle Cell Disease Blood, 2004, 104, 1680-1680.	1.4	0
63	The Outcomes of Preimplantation Genetic Diagnosis Therapy in Treatment of β Thalassemia - a Retrospective Analysis Blood, 2004, 104, 3783-3783.	1.4	Ο
64	Iron Overload in Acute Myelogenous Leukemia after Bone Marrow Transplantation Blood, 2006, 108, 5336-5336.	1.4	0
65	Augmented Regulatory T Cell Response After Photochemical Treatment Alleviates Acute Graft-Versus-Host Disease and Improves Survival Blood, 2010, 116, 3740-3740.	1.4	0
66	Host Nrf2 –glutathione Redox Dysregulation Precedes TNF-α Elevation and Predicts Severity of Graft Versus Host Disease in Experimental Transplantation. Blood, 2012, 120, 4107-4107.	1.4	0
67	Modulated Cyclophosphamide-Based In Vivo T-Cell Depletion Promotes Engraftment With Minimal Gvhd and Low Toxicity In Fanconi Anemia Patients. Blood, 2013, 122, 4561-4561.	1.4	0
68	Graft Failure after Hematopoietic Cell Transplantation for Hemoglobin Disorders: Successful Application of a Rescue Regimen. Blood, 2015, 126, 5460-5460.	1.4	0
69	Next Generation Sequence Minimal Residual Disease (NGS-MRD) Predicts Outstanding Event Free Survival (EFS) Regardless of Hematopoietic Cell Transplantation (HCT) Preparative Approach or Graft Alpha/Beta Depletion in Children with Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 4624-4624.	1.4	0
70	A Phase II Trial to Compare Allogeneic Transplant Vs. Standard of Care for Severe Sickle Cell Disease: Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Protocol 1503. Blood, 2019, 134, 4592-4592.	1.4	0
71	Hematopoietic Cell Transplantation for Sickle Cell Disease. , 0, , 1090-1104.		0