Olga A Guryanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513380/publications.pdf

Version: 2024-02-01

18 702 7 17
papers citations h-index g-index

20 20 20 1857 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	DNMT3A Harboring Leukemia-Associated Mutations Directs Sensitivity to DNA Damage at Replication Forks. Clinical Cancer Research, 2022, 28, 756-769.	7.0	9
2	Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Experimental Hematology, 2022, , .	0.4	2
3	Alterations to <i>DNMT3A</i> in Hematologic Malignancies. Cancer Research, 2021, 81, 254-263.	0.9	20
4	HOXBLINC long non-coding RNA activation promotes leukemogenesis in NPM1-mutant acute myeloid leukemia. Nature Communications, 2021, 12, 1956.	12.8	28
5	Repurposing Tranexamic Acid as an Anticancer Agent. Frontiers in Pharmacology, 2021, 12, 792600.	3.5	4
6	DNMT3A alterations associated with myeloid malignancies dictate differential responses to hypomethylating agents. Leukemia Research, 2020, 94, 106372.	0.8	2
7	Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nature Communications, 2019, 10, 4374.	12.8	28
8	Disulfide bond-disrupting agents activate the tumor necrosis family-related apoptosis-inducing ligand/death receptor 5 pathway. Cell Death Discovery, 2019, 5, 153.	4.7	9
9	DNMT3A with Leukemia-Associated Mutations Directs Sensitivity to DNA Damage at Replication Forks. Blood, 2019, 134, 535-535.	1.4	1
10	Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells InÂVivo. Cell Reports, 2018, 23, 1-10.	6.4	159
11	Cells with DNMT3A Mutations Are More Sensitive to Cytarabine-Induced DNA Damage. Blood, 2018, 132, 2643-2643.	1.4	3
12	Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers. Cancer Discovery, 2017, 7, 868-883.	9.4	101
13	FQI1: a transcription-methylation switch for cancer. Oncotarget, 2017, 8, 12536-12537.	1.8	O
14	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	30.7	195
15	Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Molecular Cancer Research, 2016, 14, 185-195.	3.4	9
16	CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 2015, 28, 15-28.	16.8	124
17	Advances in the Development of Animal Models of Myeloid Leukemias. Seminars in Hematology, 2013, 50, 145-155.	3.4	3
18	Genetic and Functional Investigation of Germline JAK2 Alleles That Predispose to Myeloproliferative Neoplasms. Blood, 2011, 118, 124-124.	1.4	4