Yasusei Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513289/publications.pdf

Version: 2024-02-01

		279798	361022
97	1,612	23	35
papers	citations	h-index	g-index
97	97	97	923
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Room-temperature fabrication of Pt nanoparticle-dispersed porous WO3 gasochromic switchable films using oxalic acid. Solar Energy Materials and Solar Cells, 2022, 245, 111891.	6.2	2
2	Ellipsometric study of the electronic behaviors of titanium-vanadium dioxide (Ti <i>x</i> V1â°' <i>x</i> O2) films for 0 ≤i>x ≤ during semiconductive-to-metallic phase transition. Applied Physics Letters, 2021, 118, .	3.3	3
3	Gas and humidity analyses in gasochromic processes of switchable mirrors. Solar Energy Materials and Solar Cells, 2021, 233, 111389.	6.2	1
4	Low-temperature chemical fabrication of WO3 gasochromic switchable films: a comparative study of Pd and Pt nanoparticles dispersed WO3 films based on their structural and chemical properties. Thin Solid Films, 2020, 709, 138201.	1.8	13
5	Roll-to-roll production of Prussian blue/Pt nanocomposite films for flexible gasochromic applications. Inorganica Chimica Acta, 2020, 505, 119466.	2.4	5
6	High contrast gasochromism of wet processable thin film with chromic and catalytic nanoparticles. Journal of Materials Chemistry C, 2018, 6, 4760-4764.	5. 5	9
7	Fabrication of nickel oxyhydroxide/palladium (NiOOH/Pd) nanocomposite for gasochromic application. Solar Energy Materials and Solar Cells, 2018, 177, 120-127.	6.2	30
8	Poly(3,4-alkylenedioxythiophenes): PXDOTs electrochromic polymers as gasochromic materials. Solar Energy Materials and Solar Cells, 2018, 187, 30-38.	6.2	10
9	A new type of gasochromic material: conducting polymers with catalytic nanoparticles. Chemical Communications, 2017, 53, 3242-3245.	4.1	33
10	Low-temperature chemical fabrication of Pt-WO 3 gasochromic switchable films using UV irradiation. Solar Energy Materials and Solar Cells, 2017, 170, 21-26.	6.2	30
11	Fabrication of nickel oxyhydroxide/palladium (NiOOH/Pd) thin films for gasochromic application. Journal of Materials Chemistry C, 2016, 4, 5390-5397.	5.5	36
12	Improving the optical properties of switchable mirrors based on Mg–Y alloy using antireflection coatings. Solar Energy Materials and Solar Cells, 2015, 141, 337-340.	6.2	14
13	Pd distribution of switchable mirrors based on Mg–Y alloy thin films. Solar Energy Materials and Solar Cells, 2014, 120, 631-634.	6.2	11
14	Optical indices of switchable mirrors based on Mg–Y alloy thin films in the transparent state. Thin Solid Films, 2014, 571, 712-714.	1.8	4
15	Influence on optical properties and switching durability by introducing Ta intermediate layer in Mg–Y switchable mirrors. Solar Energy Materials and Solar Cells, 2014, 125, 133-137.	6.2	17
16	Film thickness change of switchable mirrors using Mg3Y alloy thin films due to hydrogenation and dehydrogenation. Solar Energy Materials and Solar Cells, 2014, 126, 237-240.	6.2	14
17	Switchable mirror glass with a Mg–Zr–Ni ternary alloy thin film. Solar Energy Materials and Solar Cells, 2014, 126, 227-236.	6.2	12
18	Optical switching durability of switchable mirrors based on magnesium–yttrium alloy thin films. Solar Energy Materials and Solar Cells, 2013, 117, 396-399.	6.2	29

#	Article	IF	CITATIONS
19	Si incorporated diamond-like carbon film-coated electrochromic switchable mirror glass for high environmental durability. Ceramics International, 2013, 39, 8273-8278.	4.8	3
20	Improved durability of electrochromic switchable mirror with surface coating in environment. Vacuum, 2013, 87, 155-159.	3.5	7
21	Development of switchable mirror glass. Synthesiology, 2013, 5, 262-269.	0.2	1
22	Electrochromic switchable mirror glass with controllable reflectance. Applied Physics Letters, 2012, 100, .	3.3	10
23	Solution-Based Electrolyte Layer Suitable for Electrochromic Switchable Mirror. Applied Physics Express, 2012, 5, 084101.	2.4	9
24	Composition Dependence of Pd–Ag Alloy Proton Injection Layer on Optical Switching Properties of Electrochromic Switchable Mirror. Materials Transactions, 2012, 53, 676-680.	1.2	0
25	Electrochromic switchable mirror glass fabricated using adhesive electrolyte layer. Applied Physics Letters, 2012, 101, .	3.3	10
26	Environmental durability of electrochromic switchable mirror glass at sub-zero temperature. Solar Energy Materials and Solar Cells, 2012, 104, 146-151.	6.2	10
27	Switchable mirror based on Mg–Zr–H thin films. Journal of Alloys and Compounds, 2012, 513, 495-498.	5 . 5	14
28	Dehydrogenation process of Mg–Ni based switchable mirrors analyzed by in situ spectroscopic ellipsometry. Solar Energy Materials and Solar Cells, 2012, 99, 84-87.	6.2	3
29	Optical switching properties of switchable mirrors based on Mg alloyed with alkaline-earth metals. Solar Energy Materials and Solar Cells, 2012, 99, 73-75.	6.2	19
30	Accelerated test on electrochromic switchable mirror based on magnesium alloy thin film in simulated environment of various relative humidities. Solar Energy Materials and Solar Cells, 2012, 99, 76-83.	6.2	6
31	Development of switchable mirror glass. Synthesiology, 2012, 5, 253-260.	0.2	1
32	Ellipsometric study of dielectric functions of Mg_1â^'yCa_yH_x thin films (003â‰ y â‰ 9 17). Applied Optics, 2011, 50, 3879.	2.1	1
33	Improvement of Durability of Electrochromic Switchable Mirror in Environment. Transactions of the Materials Research Society of Japan, 2011, 36, 245-247.	0.2	0
34	Fabrication of solid electrolyte Ta2O5 thin film by reactive dc magnetron sputtering suitable for electrochromic all-solid-state switchable mirror glass. Journal of the Ceramic Society of Japan, 2011, 119, 76-80.	1.1	9
35	Structural control of polyvinyl chloride sealant layer for electrochromic switchable mirror glass based on Mg-Ni thin film. Journal of the Ceramic Society of Japan, 2011, 119, 295-302.	1.1	1
36	Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated Degradation Test. Materials Transactions, 2011, 52, 464-468.	1.2	4

#	Article	IF	Citations
37	Mg–Ni thin-film composition dependence of durability of electrochromic switchable mirror glass in simulated environment. Solar Energy Materials and Solar Cells, 2011, 95, 3370-3376.	6.2	10
38	Polyvinyl chloride seal layer for improving the durability of electrochromic switchable mirrors based on Mg–Ni thin film. Thin Solid Films, 2011, 519, 8114-8118.	1.8	6
39	Electrochromic switchable mirror foil with tantalum oxide thin film prepared by reactive DC magnetron sputtering in hydrogen-containing gas. Surface and Coatings Technology, 2011, 205, 3956-3960.	4.8	7
40	Ellipsometric study of optical switching processes of Mg–Ni based switchable mirrors. Thin Solid Films, 2011, 519, 2941-2945.	1.8	6
41	Degradation Analysis of Electrochromic Switchable Mirror Glass Based on Mg–Ni Thin Film at Constant Temperature and Relative Humidity. Japanese Journal of Applied Physics, 2011, 50, 105801.	1.5	1
42	Degradation Analysis of Electrochromic Switchable Mirror Glass Based on Mg–Ni Thin Film at Constant Temperature and Relative Humidity. Japanese Journal of Applied Physics, 2011, 50, 105801.	1.5	2
43	Surface Coating of Electrochromic Switchable Mirror Glass Based on Mg–Ni Thin Film for High Durability in the Environment. Applied Physics Express, 2010, 3, 042201.	2.4	17
44	e³¿å‰ãfŸāf ©ãf¼ã®é–‹ç™º. Electrochemistry, 2010, 78, 627.	1.4	0
45	Degradation studies of electrochromic all-solid-state switchable mirror glass under various constant temperature and relative humidity conditions. Solar Energy Materials and Solar Cells, 2010, 94, 2411-2415.	6.2	8
46	Fabrication study of proton injection layer suitable for electrochromic switchable mirror glass. Thin Solid Films, 2010, 519, 934-937.	1.8	11
47	Optical switching properties of all-solid-state switchable mirror glass based on magnesium–nickel thin film for environmental temperature. Solar Energy Materials and Solar Cells, 2010, 94, 227-231.	6.2	15
48	Accelerated degradation studies on electrochromic switchable mirror glass based on magnesium–nickel thin film in simulated environment. Solar Energy Materials and Solar Cells, 2010, 94, 1716-1722.	6.2	25
49	Characterization of flexible switchable mirror film prepared by DC magnetron sputtering. Vacuum, 2010, 84, 1460-1465.	3.5	10
50	In situ spectroscopic ellipsometry study of the hydrogenation process of switchable mirrors based on magnesium-nickel alloy thin films. Journal of Applied Physics, 2010, 107, 043517.	2.5	12
51	Stress in Switchable Mirror Thin Film Resulting from Gasochromic Switching. Japanese Journal of Applied Physics, 2010, 49, 075701.	1.5	8
52	Tantalum Oxide Thin Film Prepared by Reactive Sputtering Using Hydrogen-Containing Gas for Electrochromic Switchable Mirror. Journal of the Electrochemical Society, 2010, 157, J92.	2.9	11
53	Optical properties of switchable mirrors based on magnesium-calcium alloy thin films. Applied Physics Letters, 2009, 94, .	3.3	32
54	Real time characterization of hydrogenation mechanism of palladium thin films by <i>in situ</i> spectroscopic ellipsometry. Journal of Applied Physics, 2009, 106, .	2.5	15

#	Article	IF	CITATIONS
55	Analysis of Degradation of Flexible All-Solid-State Switchable Mirror Based on Mg–Ni Thin Film. Japanese Journal of Applied Physics, 2009, 48, 102402.	1.5	10
56	Optical charge transfer absorption in proton injected tungsten oxide thin films analyzed with spectroscopic ellipsometry. Solid State Ionics, 2009, 180, 659-661.	2.7	7
57	Hydrogenation and dehydrogenation processes of palladium thin films measured in situ by spectroscopic ellipsometry. Solar Energy Materials and Solar Cells, 2009, 93, 2143-2147.	6.2	12
58	Preparation and characterization of gasochromic switchable-mirror window with practical size. Solar Energy Materials and Solar Cells, 2009, 93, 2138-2142.	6.2	40
59	Optical property and cycling durability of polytetrafluoroethylene top-covered and metal buffer layer inserted Mg–Ni switchable mirror. Solar Energy Materials and Solar Cells, 2009, 93, 1642-1646.	6.2	19
60	Clear transparency all-solid-state switchable mirror with Mg–Ti thin film on polymer sheet. Solar Energy Materials and Solar Cells, 2009, 93, 2083-2087.	6.2	12
61	Electrochemical evaluation of Ta2O5 thin film for all-solid-state switchable mirror glass. Solid State lonics, 2009, 180, 654-658.	2.7	33
62	Solid electrolyte of tantalum oxide thin film deposited by reactive DC and RF magnetron sputtering for all-solid-state switchable mirror glass. Solar Energy Materials and Solar Cells, 2008, 92, 120-125.	6.2	31
63	Metal buffer layer inserted switchable mirrors. Solar Energy Materials and Solar Cells, 2008, 92, 216-223.	6.2	20
64	Magnesium–titanium alloy thin-film switchable mirrors. Solar Energy Materials and Solar Cells, 2008, 92, 224-227.	6.2	40
65	All-solid-state switchable mirror on flexible sheet. Surface and Coatings Technology, 2008, 202, 5633-5636.	4.8	13
66	Effect of deposition conditions on the response and durability of an Mg4Ni film switchable mirror. Vacuum, 2008, 83, 486-489.	3.5	6
67	Reactive DC sputter-deposited tantalum oxide thin film for all-solid-state switchable mirror. Vacuum, 2008, 83, 602-605.	3.5	3
68	Antidazzle effect of switchable mirrors prepared on substrates with rough surface. Solar Energy Materials and Solar Cells, 2008, 92, 1617-1620.	6.2	7
69	Improved Durability of All-Solid-State Switchable Mirror Based on Magnesium–Nickel Thin Film Using Aluminum Buffer Layer. Journal of the Electrochemical Society, 2008, 155, J278.	2.9	3
70	Gasochromic Properties of Mg–Ni Switchable Mirror Thin Films on Flexible Sheets. Japanese Journal of Applied Physics, 2008, 47, 7993.	1.5	1
71	Optical properties of tungsten oxide thin films with protons intercalated during sputtering. Journal of Applied Physics, 2008, 103, 063508.	2.5	9
72	Flexible all-solid-state switchable mirror on plastic sheet. Applied Physics Letters, 2008, 92, 041912.	3.3	44

#	Article	IF	Citations
73	Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror. Journal of Physics: Conference Series, 2008, 100, 082017.	0.4	9
74	Near colorless all-solid-state switchable mirror based on magnesium-titanium thin film. Journal of Applied Physics, 2008, 103 , .	2.5	32
75	Polytetrafluoroethylene (PTFE) Top-Covered Mg-Ni Switchable Mirror Thin Films. Materials Transactions, 2008, 49, 1919-1921.	1.2	13
76	Optical properties and degradation mechanism of magnesium-niobium thin film switchable mirrors. Journal of the Ceramic Society of Japan, 2008, 116, 771-775.	1.1	9
77	Electrochromic Properties of Pd-capped Mg-Ni Switchable Mirror Thin Films. Electrochemistry, 2008, 76, 282-287.	1.4	2
78	High Durability of Clear Transparency All-Solid-State Switchable Mirror Based on Magnesium–Titanium Thin Film. Applied Physics Express, 2008, 1, 067007.	2.4	6
79	Degradation of Switchable Mirror Based on Mg–Ni Alloy Thin Film. Japanese Journal of Applied Physics, 2007, 46, 4260-4264.	1.5	32
80	New Switchable Mirror Based on Magnesium–Niobium Thin Film. Japanese Journal of Applied Physics, 2007, 46, L13-L15.	1.5	16
81	Effective Density of Tantalum Oxide Thin Film by Reactive DC Magnetron Sputtering for All-Solid-State Switchable Mirror. Journal of the Electrochemical Society, 2007, 154, J267.	2.9	19
82	Aluminum buffer layer for high durability of all-solid-state switchable mirror based on magnesium-nickel thin film. Applied Physics Letters, 2007, 91, .	3.3	43
83	Toward Solid-State Switchable Mirror Devices Using Magnesium-Rich Magnesium–Nickel Alloy Thin Films. Japanese Journal of Applied Physics, 2007, 46, 5168-5171.	1.5	47
84	Durability of All-Solid-State Switchable Mirror Based on Magnesium–Nickel Thin Film. Electrochemical and Solid-State Letters, 2007, 10, J52.	2.2	30
85	Estimation of the amount of the proton injected into tungsten oxide thin films during deposition using spectroscopic ellipsometry. Thin Solid Films, 2007, 515, 3825-3829.	1.8	3
86	Color-neutral switchable mirrors based on magnesium-titanium thin films. Applied Physics A: Materials Science and Processing, 2007, 87, 621-624.	2.3	56
87	The effect of polymer coatings on switching behavior and cycling durability of Pd/Mg–Ni thin films. Applied Surface Science, 2007, 253, 6268-6272.	6.1	27
88	Optical switching property of Pd-capped Mg–Ni alloy thin films prepared by magnetron sputtering. Vacuum, 2006, 80, 684-687.	3.5	67
89	Titanium-Buffer-Layer-Inserted Switchable Mirror Based on Mg-Ni Alloy Thin Film. Japanese Journal of Applied Physics, 2006, 45, L588-L590.	1.5	33
90	Room-Temperature Hydrogen Sensor Based on Pd-Capped Mg2Ni Thin Film. Japanese Journal of Applied Physics, 2004, 43, L507-L509.	1.5	21

#	Article	IF	CITATIONS
91	The Curie temperature dependence on preparation conditions for Gd thin films. Thin Solid Films, 2004, 459, 191-194.	1.8	9
92	Hydrogenation of Pd capped Mg thin films at room temperature. Surface Science, 2004, 566-568, 751-754.	1.9	76
93	Optical switching of Mg-rich Mg–Ni alloy thin films. Applied Physics Letters, 2002, 81, 4709-4711.	3.3	158
94	Pinning effect of a LaFeO3 buffer layer on the magnetization of a La1â^'xPbxMnO3 layer. Applied Physics Letters, 2002, 80, 1409-1411.	3.3	8
95	Curie temperature control of La1â^'xPbxMnO3â^'y thin film by changing the pulsed laser deposition conditions. Thin Solid Films, 2000, 375, 1-4.	1.8	7
96	Microstructure of Fe/Cu (Au) artificial superlattice. Thin Solid Films, 1998, 318, 180-185.	1.8	1
97	Scanning Tunneling Microscopy in Liquid on Geometrical Study of Cu(001) Surface. Japanese Journal of Applied Physics, 1995, 34, 6210-6213.	1.5	1