
Hans Robert Kalbitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nature Structural Biology, 1995, 2, 36-44.	9.7	259
2	Conformational Transitions in p21rasand in Its Complexes with the Effector Protein Raf-RBD and the GTPase Activating Protein GAPâ€. Biochemistry, 1996, 35, 10308-10320.	2.5	227
3	Combined chemical shift changes and amino acid specific chemical shift mapping of protein–protein interactions. Journal of Biomolecular NMR, 2007, 39, 275-289.	2.8	200
4	Human Immunodeficiency Virus Type 1 Nef Protein Is Incorporated into Virus Particles and Specifically Cleaved by the Viral Proteinase. Virology, 1996, 219, 228-236.	2.4	190
5	Thermodynamic and Kinetic Characterization of the Interaction between the Ras Binding Domain of AF6 and Members of the Ras Subfamily. Journal of Biological Chemistry, 1999, 274, 13556-13562.	3.4	126
6	Conformational States of Human Rat Sarcoma (Ras) Protein Complexed with Its Natural Ligand GTP and Their Role for Effector Interaction and GTP Hydrolysis. Journal of Biological Chemistry, 2010, 285, 39768-39778.	3.4	120
7	Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 292, 321-332.	4.2	114
8	Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nature Structural Biology, 1997, 4, 694-699.	9.7	111
9	Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 289, 123-138.	4.2	107
10	NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature, 1997, 385, 272-275.	27.8	104
11	Automated structure determination of proteins by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2004, 44, 33-96.	7.5	98
12	Stabilizing a Weak Binding State for Effectors in the Human Ras Protein by Cyclen Complexes. Angewandte Chemie - International Edition, 2010, 49, 3830-3833.	13.8	97
13	Fundamental Link between Folding States and Functional States of Proteins. Journal of the American Chemical Society, 2009, 131, 16714-16719.	13.7	90
14	Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. Biochemistry, 1993, 32, 8411-8420.	2.5	88
15	Conformational States of Ras Complexed with the GTP Analogue GppNHp or GppCH2p:  Implications for the Interaction with Effector Proteins. Biochemistry, 2005, 44, 2225-2236.	2.5	85
16	Human Immunodeficiency Virus Type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains. Retrovirology, 2007, 4, 70.	2.0	70
17	Characterisation of the metal-ion-GDP complex at the active sites of transforming and nontransforming p21 proteins by observation of the 17O-Mn superhyperfine coupling and by kinetic methods. FEBS Journal, 1987, 162, 49-55.	0.2	69
18	The Recombinant Dehydrin-Like Desiccation Stress Protein from the Resurrection PlantCraterostigma plantagineumDisplays No Defined Three-Dimensional Structure in Its Native State. Biological Chemistry Hoppe-Seyler, 1996, 377, 555-562.	1.4	67

#	Article	IF	CITATIONS
19	1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa. Biophysical Chemistry, 2002, 96, 129-140.	2.8	65
20	Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nature Structural Biology, 1999, 6, 146-150.	9.7	64
21	Role of Entropy in Protein Thermostability:Â Folding Kinetics of a Hyperthermophilic Cold Shock Protein at High Temperatures Using19F NMRâ€. Biochemistry, 2002, 41, 11670-11680.	2.5	64
22	Perturbation of the conformational equilibria in Ras by selective mutations as studied by31P NMR spectroscopy. FEBS Letters, 2004, 578, 305-310.	2.8	64
23	A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nature Structural and Molecular Biology, 2013, 20, 1273-1280.	8.2	61
24	Intrinsic Allosteric Inhibition of Signaling Proteins by Targeting Rare Interaction States Detected by Highâ€Pressure NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 14242-14246.	13.8	60
25	Indirect Referencing of31P and19F NMR Spectra. Journal of Magnetic Resonance Series B, 1996, 113, 177-178.	1.6	58
26	Metal–Bis(2â€picolyl)amine Complexes as Stateâ€1(T) Inhibitors of Activated Ras Protein. Angewandte Chemie - International Edition, 2012, 51, 10647-10651.	13.8	58
27	Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). Journal of Biomolecular NMR, 2002, 23, 271-287.	2.8	53
28	Solution Structure of the Ras Binding Domain of the Protein Kinase Byr2 from Schizosaccharomyces pombe. Structure, 2001, 9, 1029-1041.	3.3	52
29	Formation of Fenestrae in Murine Liver Sinusoids Depends on Plasmalemma Vesicle-Associated Protein and Is Required for Lipoprotein Passage. PLoS ONE, 2014, 9, e115005.	2.5	52
30	RFAC, a program for automated NMR R-factor estimation. Journal of Biomolecular NMR, 2000, 17, 137-151.	2.8	50
31	Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPÎ ³ S. FEBS Journal, 2007, 274, 1419-1433.	4.7	50
32	Relax, a Flexible Program for the Back Calculation of NOESY Spectra Based on Complete-Relaxation-Matrix Formalism. Journal of Magnetic Resonance, 1997, 124, 177-188.	2.1	47
33	High-sensitivity sapphire cells for high pressure NMR spectroscopy on proteins. Journal of Magnetic Resonance, 2003, 161, 127-131.	2.1	47
34	A novel mechanism for the modulation of the Ras-effector interaction by small molecules. Biochemical and Biophysical Research Communications, 2005, 334, 709-713.	2.1	47
35	Structure of the Metalâ^`Water Complex in Ras·GDP Studied by High-Field EPR Spectroscopy and 31P NMR Spectroscopy. Biochemistry, 2001, 40, 1884-1889.	2.5	46
36	Infrequent cavity-forming fluctuations in HPr from Staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips. Protein Science, 2009, 13, 3104-3114.	7.6	45

#	Article	IF	CITATIONS
37	Stability and proteolytic domains of Nef protein from human immunodeficiency virus (HIV) type 1. FEBS Journal, 1994, 221, 811-819.	0.2	44
38	Observation of intermediate states of the human prion protein by high pressure NMR spectroscopy. BMC Structural Biology, 2006, 6, 16.	2.3	44
39	¹ H and ³¹ P NMR spectroscopy of phosphorylated model peptides. International Journal of Peptide and Protein Research, 1994, 44, 193-198.	0.1	44
40	The solution structure of the histidine-containing protein (HPr) from Staphylococcus aureus as determined by two-dimensional 1H-NMR spectroscopy. FEBS Journal, 1993, 216, 205-214.	0.2	43
41	Conformational States of the Nuclear GTP-Binding Protein Ran and Its Complexes with the Exchange Factor RCC1 and the Effector Protein RanBP1â€. Biochemistry, 1999, 38, 11250-11260.	2.5	43
42	A general Bayesian method for an automated signal class recognition in 2D NMR spectra combined with a multivariate discriminant analysis. Journal of Biomolecular NMR, 1995, 5, 287-96.	2.8	42
43	¹⁵ N and ¹ H NMR study of histidine containing protein (hpr) from <i>staphylococcus carnosus</i> at high pressure. Protein Science, 2000, 9, 693-703.	7.6	42
44	The lipoprotein subfraction profile: heritability and identification of quantitative trait loci. Journal of Lipid Research, 2008, 49, 715-723.	4.2	41
45	Improved Binding of Raf to Ras·GDP Is Correlated with Biological Activity. Journal of Biological Chemistry, 2009, 284, 31893-31902.	3.4	41
46	Pressure-induced local unfolding of the Ras binding domain of RalGDS. Nature Structural Biology, 2000, 7, 547-550.	9.7	39
47	NMR-Spectroscopic Mapping of an Engineered Cavity in the I14A Mutant of HPr fromStaphylococcuscarnosusUsing Xenon. Journal of the American Chemical Society, 2003, 125, 8726-8727.	13.7	37
48	Structure of the Leech Protein Saratin and Characterization of Its Binding to Collagen. Journal of Molecular Biology, 2008, 381, 913-927.	4.2	36
49	NMR Structure and Functional Characteristics of the Hydrophilic N Terminus of the Potassium Channel β-Subunit Kvβ1.1. Journal of Biological Chemistry, 1999, 274, 35521-35525.	3.4	35
50	Pulsed Pressure Perturbations, an Extra Dimension in NMR Spectroscopy of Proteins. Journal of the American Chemical Society, 2011, 133, 13646-13651.	13.7	35
51	Human Cytomegalovirus Major Immediate Early 1 Protein Targets Host Chromosomes by Docking to the Acidic Pocket on the Nucleosome Surface. Journal of Virology, 2014, 88, 1228-1248.	3.4	35
52	Stem cell metabolic and spectroscopic profiling. Trends in Biotechnology, 2013, 31, 204-213.	9.3	34
53	Oligomerization of the Nef protein from human immunodeficiency virus (HIV) type 1. FEBS Journal, 1993, 214, 451-457.	0.2	33
54	Glucosylation of Ras byClostridium sordelliiLethal Toxin:Â Consequences for Effector Loop Conformations Observed by NMR Spectroscopyâ€. Biochemistry, 2003, 42, 11951-11959.	2.5	33

#	Article	IF	CITATIONS
55	Large-Scale Candidate Gene Analysis of HDL Particle Features. PLoS ONE, 2011, 6, e14529.	2.5	32
56	The Structure of the EF-Tu . GDP . Me2+ Complex. FEBS Journal, 1982, 124, 109-115.	0.2	31
57	Ceramic cells for high pressure NMR spectroscopy of proteins. Journal of Magnetic Resonance, 2010, 204, 196-199.	2.1	31
58	Distinct Conformational States of the Alzheimer βâ€Amyloid Peptide Can Be Detected by Highâ€Pressure NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 8943-8947.	13.8	30
59	Structure Determination and Ligand Interactions of the PDZ2b Domain of PTP-Bas (hPTP1E): Splicing-induced Modulation of Ligand Specificity. Journal of Molecular Biology, 2003, 334, 143-155.	4.2	29
60	Solution structure of human proinsulin C-peptide. FEBS Journal, 2005, 272, 4284-4293.	4.7	29
61	Mobility of the N-Terminal Segment of Rabbit Skeletal Muscle F-Actin Detected by1H and19F Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 1996, 35, 12686-12693.	2.5	28
62	Genetic associations with lipoprotein subfractions provide information on their biological nature. Human Molecular Genetics, 2012, 21, 1433-1443.	2.9	28
63	Pressure Dependence of 15N Chemical Shifts in Model Peptides Ac-Gly-Gly-X-Ala-NH2. Materials, 2012, 5, 1774-1786.	2.9	27
64	Computer Assisted Assignment of13C or15N Edited 3D-NOESY–HSQC Spectra Using Back Calculated and Experimental Spectra. Journal of Magnetic Resonance, 1999, 137, 39-45.	2.1	26
65	Ca2+-dependent Conformational Changes in a C-terminal Cytosolic Domain of Polycystin-2. Journal of Biological Chemistry, 2009, 284, 24372-24383.	3.4	26
66	Rabbit skeletal muscle myosin unfolded carboxyl-terminus and its role in molecular assembly. FEBS Letters, 1991, 281, 23-26.	2.8	25
67	Physiological buffers for NMR spectroscopy. Journal of Biomolecular NMR, 1995, 5, 321-2.	2.8	25
68	Reversible monomer-oligomer transition in human prion protein. Prion, 2008, 2, 118-122.	1.8	25
69	Cosolvent and Crowding Effects on the Temperature and Pressure Dependent Conformational Dynamics and Stability of Globular Actin. Journal of Physical Chemistry B, 2016, 120, 6575-6586.	2.6	25
70	A new high sensitivity19F probe for labeling cysteine groups of proteins. NMR in Biomedicine, 1992, 5, 347-350.	2.8	24
71	The Structural Isomerisation of Human-Muscle Adenylate Kinase as Studied by 1H-Nuclear Magnetic Resonance. FEBS Journal, 1982, 126, 531-536.	0.2	23
72	The Chemical Shift Baseline for Highâ€Pressure NMR Spectra of Proteins. Angewandte Chemie - International Edition, 2016, 55, 8757-8760.	13.8	23

#	Article	IF	CITATIONS
73	Observation of Slow Dynamic Exchange Processes in Ras Protein Crystals by 31P Solid State NMR Spectroscopy. Journal of Molecular Biology, 2002, 323, 899-907.	4.2	22
74	High-Resolution Structure of the Histidine-Containing Phosphocarrier Protein (HPr) from Staphylococcus aureus and Characterization of Its Interaction with the Bifunctional HPr Kinase/Phosphorylase. Journal of Bacteriology, 2004, 186, 5906-5918.	2.2	22
75	Solid-state 31P NMR Spectroscopy of Microcrystals of the Ras Protein and its Effector Loop Mutants: Comparison Between Crystalline and Solution State. Journal of Molecular Biology, 2004, 342, 1033-1040.	4.2	22
76	Electron-paramagnetic-resonance studies of manganese(II) complexes with elongation factor Tu from Bacillus stearothermophilus. Observation of a GTP hydrolysis intermediate state complex. FEBS Journal, 1984, 141, 591-597.	0.2	21
77	Species-specific Differences in the Intermediate States of Human and Syrian Hamster Prion Protein Detected by High Pressure NMR Spectroscopy. Journal of Biological Chemistry, 2007, 282, 22689-22698.	3.4	21
78	Zinc(II)cyclen–peptide conjugates interacting with the weak effector binding state of Ras. Inorganica Chimica Acta, 2011, 365, 38-48.	2.4	21
79	1H NMR spectroscopy quantifies visibility of lipoproteins, subclasses, and lipids at varied temperatures and pressures. Journal of Lipid Research, 2019, 60, 1516-1534.	4.2	21
80	Proton nuclear magnetic resonance studies on the structure and mechanism of the HPr protein of Staphylococcus aureus. Biochemistry, 1981, 20, 1599-1605.	2.5	20
81	Expression, purification and biochemical characterisation of the human immunodificiency virus 1 nef gene product. FEBS Journal, 1992, 205, 1115-1121.	0.2	20
82	Cu2+-cyclen as Probe to Identify Conformational States in Guanine Nucleotide Binding Proteins. Journal of the American Chemical Society, 2011, 133, 2048-2051.	13.7	20
83	Relationship between Nonlinear Pressure-Induced Chemical Shift Changes and Thermodynamic Parameters. Journal of Physical Chemistry B, 2014, 118, 5681-5690.	2.6	20
84	Two-dimensional proton NMR studies on HPr protein from Staphylococcus aureus: complete sequential assignments and secondary structure. Biochemistry, 1991, 30, 11186-11192.	2.5	19
85	High-temperature solution NMR structure of TmCsp. Protein Science, 2004, 13, 342-350.	7.6	18
86	High Pressure NMR Methods for Characterizing Functional Substates of Proteins. Sub-Cellular Biochemistry, 2015, 72, 179-197.	2.4	17
87	Equilibria between conformational states of the Ras oncogene protein revealed by high pressure crystallography. Chemical Science, 2022, 13, 2001-2010.	7.4	17
88	On the Analysis of Competitive Binding of Various Ligands to Cooperative and Independent Binding Sites of Macromolecules. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1979, 34, 757-769.	1.4	16
89	Synthesis, characterization and application of two nucleoside triphosphate analogues, GTPγNH2 and GTPγF. FEBS Journal, 2002, 269, 3270-3278.	0.2	16
90	Solution Structures of the Inactive and BeF3-activated Response Regulator CheY2. Journal of Molecular Biology, 2004, 338, 287-297.	4.2	16

#	Article	IF	CITATIONS
91	Mapping of protein structural ensembles by chemical shifts. Journal of Biomolecular NMR, 2010, 48, 71-83.	2.8	16
92	¹ H-Nuclear Magnetic Resonance Spectroscopy of Glioblastoma Cancer Stem Cells. Stem Cells and Development, 2011, 20, 2189-2195.	2.1	16
93	Elucidating the Mode of Action of a Typical Ras State 1(T) Inhibitor. Biochemistry, 2014, 53, 3867-3878.	2.5	16
94	The effect of phosphorylation of the histidyl residue in the tetrapeptide Gly-Gly-His-Ala. Changes of chemical shift and pK values in1H- and31P-NMR spectra. Magnetic Resonance in Chemistry, 1981, 17, 88-91.	0.7	15
95	Mechanism of the Activation of Proteinase Inhibitor Synthesis by Systemin Involves β-Sheet Structure, a Specific DNA-Binding Protein Domain. Journal of Structural Biology, 1995, 115, 30-36.	2.8	15
96	Polyamine Spider Toxins and Mammalian N-Methyl-d-Aspartate Receptors. Structural Basis for Channel Blocking and Binding of Argiotoxin636. FEBS Journal, 1996, 240, 416-426.	0.2	15
97	Solution structure of the matrix attachment region-binding domain of chicken MeCP2. FEBS Journal, 2003, 270, 3263-3270.	0.2	15
98	A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. BMC Bioinformatics, 2005, 6, 91.	2.6	15
99	Solution Structure of the Ran-binding Domain 2 of RanBP2 and its Interaction with the C Terminus of Ran. Journal of Molecular Biology, 2005, 348, 711-725.	4.2	15
100	Intrinsic disorder in the common N-terminus of human adenovirus 5 E1B-55K and its related E1BN proteins indicated by studies on E1B-93R. Virology, 2011, 418, 133-143.	2.4	15
101	31 P NMR spectra of thiophosphate analogues of guanosine nucleotides. FEBS Letters, 1980, 121, 211-214.	2.8	14
102	Conformational states of human H-Ras detected by high-field EPR, ENDOR, and31P NMR spectroscopy. Magnetic Resonance in Chemistry, 2005, 43, S74-S83.	1.9	14
103	PSCD Domains of Pleuralin-1 from the Diatom Cylindrotheca fusiformis : NMR Structures and Interactions with Other Biosilica-Associated Proteins. Structure, 2016, 24, 1178-1191.	3.3	14
104	Pressure-dependent electronic structure calculations using integral equation-based solvation models. Biophysical Chemistry, 2020, 257, 106258.	2.8	14
105	C-terminal structure and mobility of rabbit skeletal muscle light meromyosin as studied by one- and two-dimensional proton NMR spectroscopy and x-ray small-angle scattering. Biochemistry, 1991, 30, 8083-8091.	2.5	13
106	Determination of Mean and Standard Deviation of Dihedral Angles. Biochemical and Biophysical Research Communications, 1999, 257, 348-350.	2.1	13
107	Interaction of CheY2 and CheY2â€P with the cognate CheA kinase in the chemosensoryâ€signalling chain of <i>Sinorhizobium meliloti</i> . Molecular Microbiology, 2008, 69, 1373-1384.	2.5	13
108	Inhibition of amyloid AÎ ² aggregation by high pressures or specific <scp>d</scp> -enantiomeric peptides. Chemical Communications, 2018, 54, 3294-3297.	4.1	13

#	Article	IF	CITATIONS
109	Complete1H Nuclear Magnetic Resonance Assignments and Structural Characterization of a Fusion Protein of the α-Amylase Inhibitor Tendamistat with the Activation Domain of the Human Immunodeficiency Virus Type 1 Tat Protein. Journal of Molecular Biology, 1995, 250, 672-688.	4.2	12
110	High-pressure NMR study of the complex of a GTPase Rap1A with its effector RalGDS. FEBS Letters, 2001, 506, 180-184.	2.8	12
111	Improved simulation of NOESY spectra by RELAX-JT2 including effects of J-coupling, transverse relaxation and chemical shift anisotropy. Journal of Biomolecular NMR, 2004, 30, 121-131.	2.8	12
112	The pressure and temperature perturbation approach reveals a whole variety of conformational substates of amyloidogenic hIAPP monitored by 2D NMR spectroscopy. Biophysical Chemistry, 2019, 254, 106239.	2.8	12
113	Use of Global Symmetries in Automated Signal Class Recognition by a Bayesian Method. Journal of Magnetic Resonance, 1997, 129, 165-172.	2.1	11
114	AUREMOL-RFAC-3D, combination of R-factors and their use for automated quality assessment of protein solution structures. Journal of Biomolecular NMR, 2006, 37, 15-30.	2.8	11
115	Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2. Journal of Biomolecular NMR, 2016, 65, 65-77.	2.8	11
116	SHORT COMMUNICATION: Biochemical analysis of cervical mucus by nuclear magnetic resonance spectroscopy*. Human Reproduction, 1992, 7, 915-917.	0.9	10
117	Physiological Conditions and Practicality for Protein Nuclear Magnetic Resonance Spectroscopy: Experimental Methodologies and Theoretical Background. Methods in Enzymology, 2001, 339, 3-19.	1.0	10
118	Solution structure of the active-centre mutant 114A of the histidine-containing phosphocarrier protein from Staphylococcus carnosus. FEBS Journal, 2004, 271, 4815-4824.	0.2	10
119	State 1(T) Inhibitors of Activated Ras. The Enzymes, 2013, 33 Pt A, 69-94.	1.7	10
120	31P nuclear magnetic resonance spectroscopy of the phosphorylated tetrapeptide GlyGlyAspAla. Magnetic Resonance in Chemistry, 1988, 26, 260-263.	1.9	9
121	Mobile segments in rabbit skeletal muscle F-actin detected by1H nuclear magnetic resonance spectroscopy. FEBS Letters, 1994, 351, 405-410.	2.8	9
122	Structural studies of histidine-containing phosphocarrier protein from Enterococcus faecalis. FEBS Journal, 1998, 252, 51-58.	0.2	9
123	Molecular Alignment of Proteins in Bicellar Solutions: Quantitative Evaluation of Effects Induced in 2D COSY Spectra. Biochemical and Biophysical Research Communications, 2000, 272, 694-698.	2.1	9
124	Synthesis and NMR spectroscopy of peptides containing either phosphorylated or phosphonylated <i>cis</i> ―or <i>trans</i> â€4â€hydroxyâ€Lâ€proline. Chemical Biology and Drug Design, 1997, 49, 163-173.	1.1	9
125	NMR Spectroscopy of Macrophages Loaded with Native, Oxidized or Enzymatically Degraded Lipoproteins. PLoS ONE, 2013, 8, e56360.	2.5	9
126	Conformational States of the Small G Protein Arf-1 in Complex with the Guanine Nucleotide Exchange Factor ARNO-Sec7. Journal of Biological Chemistry, 2004, 279, 17004-17012.	3.4	8

#	Article	IF	CITATIONS
127	Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra. Journal of Magnetic Resonance, 2011, 210, 177-183.	2.1	8
128	Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain. Scientific Reports, 2016, 6, 28419.	3.3	8
129	Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2. Journal of Biomolecular NMR, 2017, 69, 53-67.	2.8	8
130	High resolution proton magnetic resonance spectroscopy of human cervical mucus. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28, 827-840.	2.8	7
131	PERMOL: restraint-based protein homology modeling using DYANA or CNS. Bioinformatics, 2005, 21, 2110-2111.	4.1	7
132	Automated solvent artifact removal and base plane correction of multidimensional NMR protein spectra by AUREMOL-SSA. Journal of Biomolecular NMR, 2010, 47, 101-111.	2.8	7
133	Limiting factors of the translation machinery. Journal of Biotechnology, 2010, 150, 44-50.	3.8	7
134	High pressure 31P NMR spectroscopy on guanine nucleotides. Journal of Biomolecular NMR, 2017, 67, 1-13.	2.8	7
135	NMR Spectroscopic Study of Noble Gas Binding into the Engineered Cavity of HPr(I14A) from Staphylococcus carnosus. Journal of Physical Chemistry B, 2005, 109, 17795-17798.	2.6	6
136	Rapid assignment of solution 31P NMR spectra of large proteins by solid-state spectroscopy. Biochemical and Biophysical Research Communications, 2006, 346, 301-305.	2.1	6
137	Solidâ€phase synthesis of H―and methylphosphonopeptides. International Journal of Peptide and Protein Research, 1996, 47, 245-253.	0.1	6
138	Conformational Substates of Amyloidogenic hIAPP Revealed by High Pressure NMR Spectroscopy. ChemistrySelect, 2016, 1, 3239-3243.	1.5	6
139	Automated Protein NMR Structure Determination in Solution. Methods in Molecular Biology, 2010, 673, 95-127.	0.9	6
140	Structure determination of polypeptides and proteins by two-dimensional nuclear magnetic resonance spectroscopy. Physica B: Condensed Matter, 1990, 164, 180-192.	2.7	5
141	A general method for the unbiased improvement of solution NMR structures by the use of related X-ray data, the AUREMOL-ISIC algorithm. BMC Structural Biology, 2006, 6, 14.	2.3	5
142	NMR-assignments of a cytosolic domain of the C-terminus of polycystin-2. Biomolecular NMR Assignments, 2009, 3, 141-144.	0.8	5
143	RNA secondary structure and in vitro translation efficiency. Protein Expression and Purification, 2012, 82, 26-31.	1.3	5
144	Pressure response of amide one-bond J-couplings in model peptides and proteins. Journal of Biomolecular NMR, 2014, 60, 45-50.	2.8	5

#	Article	IF	CITATIONS
145	Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis. Journal of Biomolecular NMR, 2017, 67, 157-164.	2.8	5
146	Solid-State31P NMR Spectroscopy of Precipitated Guanine Nucleotide-Binding Protein Ras in Complexes with Its Effector Molecules Raf Kinase and RalGDS. Journal of Physical Chemistry B, 2007, 111, 2752-2757.	2.6	4
147	Novel Metal-Organic Frameworks Incorporating [Cp°2Mo2P4S] (Cp° = 1-tBu-3,4-Me2C5H2), P4S3 and Cu2l2 Building Blocks. European Journal of Inorganic Chemistry, 2011, 2011, 785-793.	2.0	4
148	Chemical shift assignments of the canecystatin-1 from Saccharum officinarum. Biomolecular NMR Assignments, 2013, 7, 163-165.	0.8	4
149	Enhanced in vitro translation at reduced temperatures using a cold-shock RNA motif. Biotechnology Letters, 2013, 35, 389-395.	2.2	4
150	Pressure response of 31 P chemical shifts of adenine nucleotides. Biophysical Chemistry, 2017, 231, 50-54.	2.8	4
151	RNA and DNA Binding Epitopes of the Cold Shock Protein TmCsp from the Hyperthermophile Thermotoga maritima. Protein Journal, 2020, 39, 487-500.	1.6	4
152	Sequential assignment and secondary structure of saratin, an inhibitor of von Willebrand factor-dependent platelet adhesion to collagen. Journal of Biomolecular NMR, 2001, 21, 77-78.	2.8	3
153	The central domain of the matrix protein of HIV-1: influence on protein structure and virus infectivity. Biological Chemistry, 2004, 385, 303-13.	2.5	3
154	1H, 13C, andÂ15NÂSequence-specific Resonance Assignment and Secondary Structure ofÂPlasmodium falciparumÂThioredoxin. Journal of Biomolecular NMR, 2005, 32, 340-340.	2.8	3
155	Sequential Backbone Assignment of Peroxisome Proliferator-Activated Receptor-Î ³ Ligand Binding Domain. Journal of Biomolecular NMR, 2005, 32, 259-259.	2.8	3
156	NMR assignments of oxidised thioredoxin from Plasmodium falciparum. Biomolecular NMR Assignments, 2009, 3, 159-161.	0.8	3
157	Synthesis of New Water-Soluble Cholesterol Derivatives. Synthetic Communications, 2011, 41, 2876-2887.	2.1	3
158	A Singleâ€Cell NMR Membrane Transport Assay. ChemBioChem, 2012, 13, 2501-2504.	2.6	3
159	1.2Ââ"« X-ray Structure of the Renal Potassium Channel Kv1.3 T1 Domain. Protein Journal, 2013, 32, 533-542.	1.6	3
160	Die Basislinie der chemischen Verschiebung in Hochdruckâ€NMR‧pektren von Proteinen. Angewandte Chemie, 2016, 128, 8900-8904.	2.0	3
161	Complete sequential assignment and secondary structure prediction of the cannulae forming protein CanA from the hyperthermophilic archaeon Pyrodictium abyssi. Biomolecular NMR Assignments, 2020, 14, 141-146.	0.8	3
162	High protein mobility in skinned rabbit muscle fibres observed by 1 H NMR spectroscopy. FEBS Letters, 1992, 298, 226-228.	2.8	2

#	Article	IF	CITATIONS
163	Sequence-specific 1H, 13C, and 15N assignments of the MAR-binding domain of chicken MeCP2/ARBP. Journal of Biomolecular NMR, 2000, 17, 175-176.	2.8	2
164	1H, 13C and 15N sequence-specific resonance assignment of the PSCD4 domain of diatom cell wall protein pleuralin-1 [etter]. Journal of Biomolecular NMR, 2001, 20, 191-192.	2.8	2
165	Sequential assignment and secondary structure of the 14 kDa chemotactic protein CheY2 from Sinorhizobium meliloti. Journal of Biomolecular NMR, 2001, 19, 287-288.	2.8	2
166	Overcoming the problems associated with poor spectra quality of the protein kinase Byr2 using residual dipolar couplings. Protein Science, 2001, 10, 1260-1263.	7.6	2
167	Myosin II from rabbit skeletal muscle andDictyostelium discoideumand its interaction with F-actin studied by1H NMR spectroscopy. FEBS Letters, 2002, 521, 121-126.	2.8	2
168	Sequence-specific resonance assignment of the second Ran-binding domain of human RanBP2. Journal of Biomolecular NMR, 2002, 22, 185-186.	2.8	2
169	Chemical shift optimization in multidimensional NMR spectra by AUREMOL-SHIFTOPT. Journal of Biomolecular NMR, 2009, 43, 197-210.	2.8	2
170	Protein structure calculation with data imputation: the use of substitute restraints. Journal of Biomolecular NMR, 2009, 45, 397-411.	2.8	2
171	NMR assignments of a 48ÂkDa tetramer of the T1 domain of the mammalian voltage gated potassium channel Kv1.4. Biomolecular NMR Assignments, 2009, 3, 167-170.	0.8	2
172	The interaction of ammonia and xenon with the imidazole glycerol phosphate synthase from <i>Thermotoga maritima</i> as detected by NMR spectroscopy. Protein Science, 2010, 19, 1774-1782.	7.6	2
173	Expression, Purification and Characterization of the Enzyme II Mannitol-Specific Domain from Staphylococcus carnosus and Determination of the Active-Site Cysteine Residue. FEBS Journal, 1995, 233, 116-122.	0.2	1
174	Crystallization and preliminary X-ray diffraction studies of the tetramerization domain derived from the human potassium channel Kv1.3. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 688-691.	0.7	1
175	High pressure response of 1H NMR chemical shifts of purine nucleotides. Biophysical Chemistry, 2019, 254, 106261.	2.8	1
176	Pressure dependence of side chain 1H and 15N-chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2. Journal of Biomolecular NMR, 2020, 74, 381-399.	2.8	1
177	Elucidation of Protein–Protein and Protein–Ligand Interactions by NMR Spectroscopy. , 2007, , 189-229.		0