V R Mastelaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5512100/publications.pdf

Version: 2024-02-01

219 papers 6,904 citations

45 h-index 72 g-index

224 all docs

224 docs citations

224 times ranked 7736 citing authors

#	Article	IF	CITATIONS
1	A global pollutant (PVC-polyvinyl chloride) applied as heavy metal binder from aqueous samples: green principles from synthesis to application. Environmental Technology (United Kingdom), 2022, 43, 3742-3754.	2.2	6
2	Chromium in lead metasilicate glass: Solubility, valence, and local environment via multiple spectroscopy. Ceramics International, 2022, 48, 173-178.	4.8	1
3	Tunning the Gas Sensing Properties of rGO with In2O3 Nanoparticles. Surfaces, 2022, 5, 127-142.	2.3	5
4	CuO nanoparticles decorated on hydroxyapatite/ferrite magnetic support: photocatalysis, cytotoxicity, and antimicrobial response. Environmental Science and Pollution Research, 2022, 29, 41505-41519.	5.3	17
5	Phase control and optimization of photocatalytical properties of samarium doped TiO2 synthesized by coupled ultraviolet and microwave radiations. Journal of Alloys and Compounds, 2022, 905, 164217.	5.5	11
6	Enhancement of the ozone-sensing properties of ZnO through chemical-etched surface texturing. Journal of Nanoparticle Research, 2022, 24, .	1.9	7
7	Enhancement of Ammonia Gas Sensing Properties of GaAs-Based Schottky Diodes Using Ammonium Sulfide Surface Passivation. IEEE Sensors Journal, 2021, 21, 4209-4215.	4.7	2
8	Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO3 decorated with silver nanoparticles. Journal of Sol-Gel Science and Technology, 2021, 97, 228-244.	2.4	8
9	Cellulose nanofibers production using a set of recombinant enzymes. Carbohydrate Polymers, 2021, 256, 117510.	10.2	35
10	Sinteringâ€driven effects on the band gap of (Pb,La)(Ti,Ni)O ₃ photovoltaic ceramics. Journal of the American Ceramic Society, 2021, 104, 2600-2609.	3.8	1
11	Exploiting oxidative coupling of methane performed over La ₂ 0 _{7â^î^} catalysts with disordered defective cubic fluorite structure. Catalysis Science and Technology, 2021, 11, 4471-4481.	4.1	11
12	Fundamental studies of magneto-optical borogermanate glasses and derived optical fibers containing Tb3+. Journal of Materials Research and Technology, 2021, 11, 312-327.	5.8	25
13	Experimental and Theoretical Insights into the Structural Disorder and Gas Sensing Properties of ZnO. ACS Applied Electronic Materials, 2021, 3, 1447-1457.	4.3	11
14	Heterogeneous Fenton-like surface properties of oxygenated graphitic carbon nitride. Journal of Colloid and Interface Science, 2021, 587, 479-488.	9.4	21
15	XPS Study of Long-Term Passivation of GaAs Surfaces Using Saturated Ammonium Sulfide Solution under Optimum Condition. Russian Journal of Electrochemistry, 2021, 57, 471-477.	0.9	4
16	Phase evolution and optical properties of nanometric Mn-doped TiO2 pigments. Materials Today Communications, 2021, 27, 102295.	1.9	3
17	Ozone detection in the ppt-level with rGO-ZnO based sensor. Sensors and Actuators B: Chemical, 2021, 338, 129779.	7.8	25
18	Hybrid hematite/calcium ferrite fibers by solution blow spinning: Microstructural, optical and magnetic characterization. Ceramics International, 2021, 47, 33363-33372.	4.8	7

#	Article	IF	CITATIONS
19	Doped Plasmonic Zinc Oxide Nanoparticles with Near-Infrared Absorption for Antitumor Activity. ACS Applied Nano Materials, 2021, 4, 9779-9789.	5.0	6
20	Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: Batch, fixed-bed experiments and mechanism. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100584.	2.9	8
21	One-pot exfoliation and surface functionalization of MoS2: A potential nanofiller to overcome the brittleness of polystyrene (PS). Polymer, 2021, 233, 124187.	3.8	1
22	Controlling the performance of one-dimensional homojunction UV detectors based on ZnO nanoneedles array. Sensors and Actuators A: Physical, 2021, 331, 112916.	4.1	7
23	Cu-Modified SrTiO ₃ Perovskites Toward Enhanced Water–Gas Shift Catalysis: A Combined Experimental and Computational Study. ACS Applied Energy Materials, 2021, 4, 452-461.	5.1	15
24	A high-throughput, solvent free method for dispersing metal atoms directly onto supports. Journal of Materials Chemistry A, 2021, 9, 26676-26679.	10.3	6
25	Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceramics International, 2020, 46, 2987-3001.	4.8	19
26	Fabrication of SrTiO3/g-C3N4 heterostructures for visible light-induced photocatalysis. Materials Science in Semiconductor Processing, 2020, 108, 104887.	4.0	31
27	Wavelength effect of ns-pulsed radiation on the reduction of graphene oxide. Applied Surface Science, 2020, 506, 144808.	6.1	29
28	One-Step Synthesis of Nickel Sulfides and Their Electrocatalytic Activities for Hydrogen Evolution Reaction: A Case Study of Crystalline h-NiS and o-Ni ₉ S ₈ Nanoparticles. ACS Applied Energy Materials, 2020, 3, 9498-9503.	5.1	23
29	Effective removal of basic dye onto sustainable chitosan beads: Batch and fixed-bed column adsorption, beads stability and mechanism. Sustainable Chemistry and Pharmacy, 2020, 18, 100348.	3.3	14
30	Prozac $\hat{A}^{@}$ photodegradation mediated by Mn-doped TiO2 nanoparticles: Evaluation of by-products and mechanisms proposal. Journal of Environmental Chemical Engineering, 2020, 8, 104543.	6.7	28
31	Enhanced ultrasensitive detection of ozone gas using reduced graphene oxide-incorporated LaFeO3 nanospheres for environmental remediation process. Journal of Materials Science: Materials in Electronics, 2020, 31, 8933-8945.	2.2	4
32	GaAs Semiconductor Passivated by (NH4)2Sx: Analysis of Different Passivation Methods Using Electrical Characteristics and XPS Measurements. Semiconductors, 2020, 54, 817-826.	0.5	1
33	Thermal and structural modification in transparent and magnetic germanoborate glasses induced by Gd2O3. Ceramics International, 2020, 46, 22079-22089.	4.8	22
34	The role of counter-ions in crystal morphology, surface structure and photocatalytic activity of ZnO crystals grown onto a substrate. Applied Surface Science, 2020, 529, 147057.	6.1	15
35	Unvealing the role of \hat{l}^2 -Ag2MoO4 microcrystals to the improvement of antibacterial activity. Materials Science and Engineering C, 2020, 111, 110765.	7.3	44
36	Graphene Oxide as a Platform for Copper Pentacyanonitrosylferrate Nanoparticles and their Behavior in the Electroâ€oxidation of Nâ€Acetylcysteine. Electroanalysis, 2020, 32, 1408-1416.	2.9	5

3

#	Article	IF	CITATIONS
37	One-step controllable synthesis of three-dimensional WO ₃ hierarchical architectures with different morphologies decorated with silver nanoparticles: enhancing the photocatalytic activity. RSC Advances, 2020, 10, 6625-6639.	3.6	18
38	The effect of morphology on the ozone-gas sensing properties of zinc oxide sputtered films. Thin Solid Films, 2020, 703, 137975.	1.8	16
39	One-Dimensional V ₂ O ₅ /TiO ₂ Heterostructures for Chemiresistive Ozone Sensors. ACS Applied Nano Materials, 2019, 2, 4756-4764.	5.0	41
40	Unveiling the efficiency of microwave-assisted hydrothermal treatment for the preparation of SrTiO ₃ mesocrystals. Physical Chemistry Chemical Physics, 2019, 21, 22031-22038.	2.8	11
41	Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique. Applied Surface Science, 2019, 478, 347-354.	6.1	53
42	UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Mikrochimica Acta, 2019, 186, 418.	5.0	109
43	Syngas for Fischer-Tropsch synthesis by methane tri-reforming using nickel supported on MgAl2O4 promoted with Zr, Ce and Ce-Zr. Applied Surface Science, 2019, 481, 747-760.	6.1	36
44	Crystallization mechanism and kinetics of a Fe-diopside (25CaO·25MgO·50SiO2) glass–ceramic. Journal of Materials Science, 2019, 54, 9313-9320.	3.7	12
45	Ag and Cu doped ZnO nanowires: A pH-Controlled synthesis via chemical bath deposition. Materialia, 2019, 5, 100212.	2.7	30
46	Order-disorder phenomena and octahedral tilting in SrTi1-XSnXO3 perovskites – A structural and spectroscopic study. Journal of Solid State Chemistry, 2019, 269, 521-531.	2.9	3
47	Investigation of the Fe-Mo electrodeposition from sorbitol alkaline bath and characterization of the films produced. Journal of Alloys and Compounds, 2018, 750, 577-586.	5. 5	10
48	Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag Cu PO4 powders. Applied Surface Science, 2018, 440, 61-72.	6.1	24
49	Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sensors and Actuators B: Chemical, 2018, 257, 906-915.	7.8	197
50	Silver-controlled evolution of morphological, structural, and optical properties of three-dimensional hierarchical WO 3 structures synthesized from hydrothermal method. Journal of Alloys and Compounds, 2018, 736, 143-151.	5.5	24
51	Electrical transport properties and complex impedance investigation of Fe3+ and La3+ co-doping (Pb,Sr)TiO3 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 179-188.	3.5	1
52	Development of Co ₃ [Co(CN) ₆] ₂ /Fe ₃ O ₄ Bifunctional Nanocomposite for Clinical Sensor Applications. ACS Applied Nano Materials, 2018, 1, 4283-4293.	5.0	26
53	X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glassesâ€"A 45-Year Overview. Materials, 2018, 11, 204.	2.9	55
54	Structural and electrical characterization of glasses in the Li2Oâ€"CaOâ€"B2O3 system. Journal of Non-Crystalline Solids, 2018, 499, 272-277.	3.1	11

#	Article	IF	Citations
55	The Role of Nb Addition in TiO ₂ Nanoparticles: Phase Transition and Photocatalytic Properties. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800321.	1.8	7
56	Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructure. Journal of Materials Science: Materials in Electronics, 2018, 29, 17022-17037. micromachining in Dysmml:math	2.2	14
57	xmins:mmi="nttp://www.w3.org/1998/Nath/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi	n 2at h	15
58	Synthesis of ZnO Nanoparticles Assisted by N Sources and their Application in the Photodegradation of Organic Contaminants. ChemCatChem, 2017, 9, 3795-3804.	3.7	33
59	Characterization of the third-order optical nonlinearity spectrum of barium borate glasses. Optical Materials, 2017, 73, 16-19.	3.6	34
60	SrTi1â^'yFeyO3 samples obtained by hydrothermal method: The effect of the amount of Fe on structural and photocatalytic properties. Materials Science in Semiconductor Processing, 2017, 68, 140-146.	4.0	5
61	UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sensors and Actuators B: Chemical, 2017, 240, 573-579.	7.8	108
62	Deposition Rate Influence in O3 Sensing Response of Sputtered ZnO Thin Films. Proceedings (mdpi), 2017, 1, 429.	0.2	3
63	Uma avaliação experimental do tubo de ondas sonoras estacionárias. Revista Brasileira De Ensino De Fisica, 2017, 39, .	0.2	0
64	Atomic pair distribution function at the Brazilian Synchrotron Light Laboratory: application to the Pb _{1â€"<i>x</i>} La _{<i>x</i>} Zr _{0.40} Ti _{0.60} O ₃ ferroe system. Journal of Synchrotron Radiation, 2017, 24, 1098-1104.	lezaric	5
65	Morphology and Optical Properties of SrWO4 Powders Synthesized by the Coprecipitation and Polymeric Precursor Methods., 2017,, 131-154.		2
66	An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO ₃ Nanoparticles. Photochemistry and Photobiology, 2016, 92, 371-378.	2.5	49
67	Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures. , 2016, , .		12
68	Relationship between ferroelectric properties and local structure of Pb1â^'xBaxZr0.40Ti0.60O3 ceramic materials studied by X-ray absorption and Raman spectroscopies. Journal of Solid State Chemistry, 2016, 240, 16-22.	2.9	1
69	Potentiometric detection of chemical species by spin-assisted assembly of vanadium pentoxide nanorods. Sensors and Actuators B: Chemical, 2016, 229, 461-465.	7.8	8
70	Acetone gas sensor based on \hat{l}_{\pm} -Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds, 2016, 683, 186-190.	5.5	66
71	Local Structure and Surface Properties of Co _{<i>x</i>} Zn _{1â€"<i>x</i>} O Thin Films for Ozone Gas Sensing. ACS Applied Materials & Distribution (1) and the contraction of the contractio	8.0	57
72	One-step approach for preparing ozone gas sensors based on hierarchical NiCo ₂ O ₄ structures. RSC Advances, 2016, 6, 92655-92662.	3.6	114

#	Article	IF	CITATIONS
73	Study of the morphological evolution of vanadium pentoxide nanostructures under hydrothermal conditions. CrystEngComm, 2016, 18, 7636-7641.	2.6	4
74	Catalyst free vapor–solid deposition of morphologically different β-Ga ₂ O ₃ nanostructure thin films for selective CO gas sensors at low temperature. Analytical Methods, 2016, 8, 3224-3235.	2.7	27
75	In situ study of copper reduction in SrTi _{1â^'x} Cu _x O ₃ nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 2070-2079.	2.8	14
76	A novel organic pollutants gas sensing material p-type CuAlO 2 microsphere constituted of nanoparticles for environmental remediation. Sensors and Actuators B: Chemical, 2016, 223, 138-148.	7.8	37
77	An easy method of preparing ozone gas sensors based on ZnO nanorods. RSC Advances, 2015, 5, 19528-19533.	3.6	68
78	Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO ₄ :Eu ³⁺ microcrystals. CrystEngComm, 2015, 17, 1654-1666.	2.6	77
79	XANES measurements probing the local order and electronic structure of Pb1∈xBaxZr0.40Ti0.60O3 ferroelectric materials. Journal of Alloys and Compounds, 2015, 640, 355-361.	5.5	8
80	Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0.85Fe0.15O3 thin film. Journal of Alloys and Compounds, 2015, 638, 374-379.	5.5	40
81	Influence of titanium precursor on photoluminescent emission of micro-cube-shaped CaTiO3. Journal of Luminescence, 2015, 165, 130-137.	3.1	10
82	Fingerprints of short-range and long-range structure in BaZr $$ sub $$ 1 $$ 2. Fingerprints of short-range and long-range structure in study. Physical Chemistry Chemical Physics, 2015, 17, 11341-11349.	2.8	10
83	Investigation on magnetic and electric properties of morphologically different perovskite LaFeO3 nanostructures. Journal of Materials Science: Materials in Electronics, 2015, 26, 8652-8662.	2.2	30
84	Effect of different strontium precursors on the growth process and optical properties of SrWO4 microcrystals. Journal of Materials Science, 2015, 50, 8089-8103.	3.7	26
85	Photocatalytic degradation of organic pollutants by shape selective synthesis of β-Ga ₂ O ₃ microspheres constituted by nanospheres for environmental remediation. Journal of Materials Chemistry A, 2015, 3, 2617-2627.	10.3	64
86	Local structure and hybridization states in Ba0.9Ca0.1Ti1â^'Zr O3 ceramic compounds: Correlation with a normal or relaxor ferroelectric character. Acta Materialia, 2015, 84, 164-171.	7.9	40
87	Rapid hydrothermal synthesis and pH-dependent photocatalysis of strontium titanate microspheres. Materials Science in Semiconductor Processing, 2015, 30, 651-657.	4.0	43
88	Construção de um dilatômetro e determinação do coeficiente de dilatação térmica linear. Revista Brasileira De Ensino De Fisica, 2014, 36, .	0.2	1
89	An investigation into the influence of zinc precursor on the microstructural, photoluminescence, and gas-sensing properties of ZnO nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	19
90	Titanium K-Edge XAS Study on Local Structure of Pb _{1-x} Ca _x TiO ₃ Ferroelectric Ceramics. Advanced Materials Research, 2014, 975, 29-35.	0.3	4

#	Article	IF	Citations
91	Local order of Pb1â^'xLaxZr0.40Ti0.60O3 ferroelectric ceramic materials probed by X-ray absorption and Raman spectroscopies. Journal of Alloys and Compounds, 2014, 582, 680-687.	5.5	8
92	A novel ozone gas sensor based on one-dimensional (1D) \hat{l} ±-Ag ₂ WO ₄ nanostructures. Nanoscale, 2014, 6, 4058-4062.	5.6	105
93	Europium-doped calcium titanate: Optical and structural evaluations. Journal of Alloys and Compounds, 2014, 585, 154-162.	5.5	17
94	In-Depth Understanding of the Relation between CuAlO ₂ Particle Size and Morphology for Ozone Gas Sensor Detection at a Nanoscale Level. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21739-21749.	8.0	56
95	Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO ₃ nanostructures comprised of nanosheet petals. New Journal of Chemistry, 2014, 38, 5480-5490.	2.8	97
96	Surface Morphology-Dependent Room-Temperature LaFeO ₃ Nanostructure Thin Films as Selective NO ₂ Gas Sensor Prepared by Radio Frequency Magnetron Sputtering. ACS Applied Materials & Diterfaces, 2014, 6, 13917-13927.	8.0	125
97	Detection of the neurotransmitter dopamine by a glassy carbon electrode modified with self-assembled perovskite LaFeO ₃ microspheres made up of nanospheres. RSC Advances, 2014, 4, 25957-25962.	3.6	40
98	Insight into the Effects of Fe Addition on the Local Structure and Electronic Properties of SrTiO ₃ . Journal of Physical Chemistry C, 2014, 118, 4930-4940.	3.1	45
99	Local electronic structure, optical bandgap and photoluminescence (PL) properties of Ba(Zr0.75Ti0.25)O3 powders. Materials Science in Semiconductor Processing, 2013, 16, 1035-1045.	4.0	31
100	Femtosecond laser processing of glassy and polymeric matrices containing metals and semiconductor nanostructures. Optical Materials, 2013, 35, 2643-2648.	3.6	25
101	Ozone gas sensor based on nanocrystalline SrTi1â^'Fe O3 thin films. Sensors and Actuators B: Chemical, 2013, 181, 919-924.	7.8	41
102	Fe K-edge X-ray absorption spectroscopy study of Pb(Fe2/3W1/3)O3-PbTiO3 multiferroic ceramics. Journal of Applied Physics, 2013, 113, 114104.	2.5	3
103	Correlation Between Photoluminescence and Structural Defects in $\langle scp \rangle \langle sc$	> (\$s& p > < \$	scp₃⁄Ti
104	Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 12386.	2.8	91
105	Combination of guided mode and photometric optical metrology methods for precise determination of refractive index dispersion: application to polymer blend and ceramic thin films for gas sensors. Optical Engineering, 2013, 52, 094104.	1.0	2
106	Fe valence fluctuations and magnetoelastic coupling in Pbâ€based multiferroics perovskites. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 386-390.	1.8	14
107	W L _{III} -edge XANES and EXAFS studies of Pb(Fe _{2/3} W _{1/3})O ₃ -PbTiO ₃ multiferroic ceramics. Journal of Physics: Conference Series, 2013, 430, 012111.	0.4	1
108	Dielectric and Structural Characterization of Pb _{1â€"< >x< SUB>Zr_{O.40< SUB>Ti_{O.60< SUB>O_{(A = Sr, Ca) Ferroelectric Ceramics. Science of Advanced Materials, 2013, 5, 1264-1270.}}}}	0.7	O

#	Article	IF	Citations
109	Pb0.90Ba0.10Zr0.40Ti0.60O3Nanostructured Ferroelectric Ceramics Prepared by Spark Plasma Sintering. Ferroelectrics, 2012, 429, 69-74.	0.6	3
110	Relationship between Crystal Shape, Photoluminescence, and Local Structure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SrT by Microwave-Assisted Hydrothermal Method. Journal of Nanomaterials, 2012, 2012, 1-6.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>	īO <i>ḍṃ</i> ml:r	nte x8 >
111	Grain size effect on the structural and dielectric properties of Pb0.85La0.15TiO3 ferroelectric ceramic compound. Ceramics International, 2012, 38, 5879-5887.	4.8	16
112	Structural XANES characterization of Ca0.99Sm0.01TiO3 perovskite and correlation with photoluminescence emission. Chemical Physics Letters, 2012, 544, 43-48.	2.6	16
113	Quantum Mechanics Insight into the Microwave Nucleation of SrTiO ₃ Nanospheres. Journal of Physical Chemistry C, 2012, 116, 24792-24808.	3.1	62
114	Cluster Coordination and Photoluminescence Properties of \hat{l}_{\pm} -Ag ₂ WO ₄ Microcrystals. Inorganic Chemistry, 2012, 51, 10675-10687.	4.0	168
115	Correlating phase and microstructure development versus dielectric properties in La3+ and Er3+ co-doped Bi4Ti3O12 ferroelectric ceramics. Journal of Alloys and Compounds, 2012, 510, 60-65.	5.5	5
116	Local structure around Fe ions on multiferroic Pb(Fe1/2Nb1/2)O3 ceramics probed by x-ray absorption spectroscopy. Applied Physics Letters, 2012, 100, .	3.3	13
117	lon-sensing properties of 1D vanadium pentoxide nanostructures. Nanoscale Research Letters, 2012, 7, 310.	5.7	24
118	Structural refinement and photoluminescence properties of irregular cube-like (Ca1â^'xCux)TiO3 microcrystals synthesized by the microwaveâ€"hydrothermal method. Materials Chemistry and Physics, 2012, 136, 130-139.	4.0	24
119	Size-induced diffuse behavior in Pb0.89La0.11Zr0.40Ti0.60O3 nanocrystalline ferroelectric ceramics. Solid State Sciences, 2012, 14, 1392-1397.	3.2	2
120	Comparison of refractive indices measured by m-lines and ellipsometry: application to polymer blend and ceramic thin films for gas sensors. Proceedings of SPIE, 2012 , , .	0.8	2
121	Optical and luminescent properties of CdSe/ZnS and TiO2semiconductor quantum dots embedded into PMMA layers. , 2012, , .		O
122	Novel SrTilâ^'xFexO3 nanocubes synthesized by microwave-assisted hydrothermal method. CrystEngComm, 2012, 14, 4068.	2.6	21
123	Influence of Ba-substitution on the structural and ferroelectric properties of Pb1â^'xBaxZr0.40Ti0.60O3ceramic materials. Phase Transitions, 2012, 85, 659-674.	1.3	4
124	Local order and electronic structure of Pb1 \hat{a} °xLaxZr0.40Ti0.60O3 materials and its relation with ferroelectric properties. Journal of Applied Physics, 2012, 111, .	2.5	21
125	Optical properties of amorphous, erbium-doped yttrium alumino-borate thin films. Optical Materials, 2012, 34, 665-670.	3.6	4
126	On the reversed crystal growth of BaZrO3 decaoctahedron: shape evolution and mechanism. CrystEngComm, 2011, 13, 5818.	2.6	47

#	Article	IF	CITATIONS
127	Presence of excited electronic state in CaWO4 crystals provoked by a tetrahedral distortion: An experimental and theoretical investigation. Journal of Applied Physics, 2011, 110, .	2.5	84
128	22nd International Congress on Glass 2010 (ICG 2010), September 20–25, 2010, Salvador, Bahia, Brazil. Optical Materials, 2011, 33, 1837-1838.	3.6	0
129	An improved method for preparation of SrTiO3 nanoparticles. Materials Chemistry and Physics, 2011, 125, 168-173.	4.0	69
130	An efficient synthesis route of Na2V6O16 \hat{A} ·nH2O nanowires in hydrothermal conditions. Materials Chemistry and Physics, 2011, 127, 56-61.	4.0	22
131	Local structure study of vanadium pentoxide 1D-nanostructures. Journal of Nanoparticle Research, 2011, 13, 4937-4946.	1.9	32
132	Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. Journal of Crystal Growth, 2010, 312, 3555-3559.	1.5	24
133	Structure and optical properties of [Ba1–xY2x/3](Zr0.25Ti0.75)O3 powders. Solid State Sciences, 2010, 12, 1160-1167.	3.2	84
134	Oxide surface modification: Synthesis and characterization of zirconia-coated alumina. Journal of Colloid and Interface Science, 2010, 343, 256-262.	9.4	17
135	Elaboration and optimization of (Y,Er)Al3(BO3)4 glassy planar waveguides through the sol–gel process. Optical Materials, 2010, 32, 484-490.	3.6	12
136	Phaseâ€transition studies of Ba _{0.90} Ca _{0.10} (Ti _{1â^'<i>x</i>} Zr _{<i>x</i>} Closs of Salar of	1.8	8
137	Internal Residual Stress Measurements in a Bioactive Glass–Ceramic Using Vickers Indentation. Journal of the American Ceramic Society, 2010, 93, 2359-2368.	3.8	18
138	Spontaneous long and short-range ferroelectric ordering in Pb0.55La0.30TiO3 ceramics. Journal of Applied Physics, 2010, 107, .	2.5	4
139	In situ X-ray diffraction studies of phase transition in Pb _{1â^'} <i>_x</i> Zr _{0.40} Ti _{0.60} O _{3<ceramics. 2010,="" 251-262.<="" 83,="" phase="" td="" transitions,=""><td>/\$136>ferr</td><td>oelectric</td></ceramics.>}	/ \$13 6>ferr	o e lectric
140	The role of oxygen vacancy in the photoluminescence property at room temperature of the CaTiO3. Journal of Applied Physics, 2009, 106, .	2.5	39
141	Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting. Materials Chemistry and Physics, 2009, 117, 192-198.	4.0	96
142	Synthesis and thermal decomposition of SrTi1â^'x Fe x O3 (0.0Ââ%ÂxÂâ%Â0.1) powders obtained by the polymer precursor method. Journal of Thermal Analysis and Calorimetry, 2009, 97, 173-177.	eric 3.6	29
143	Nanograined Ferroelectric Ceramics Prepared by Highâ€Pressure Densification Technique. Journal of the American Ceramic Society, 2009, 92, 1679-1683.	3.8	14
144	Er:YAl3(BO3)4 glassy thin films from polymeric precursor and sol-gel methods: Waveguides for integrated optics. Thin Solid Films, 2009, 517, 6584-6587.	1.8	20

#	Article	IF	CITATIONS
145	Microstructural, structural and electrical properties of La3+-modified Bi4Ti3O12 ferroelectric ceramics. Journal of the European Ceramic Society, 2009, 29, 751-756.	5.7	28
146	Disorder-dependent photoluminescence in Ba0.8Ca0.2TiO3 at room temperature. Journal of Luminescence, 2009, 129, 686-690.	3.1	17
147	Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Materialia, 2009, 57, 5174-5185.	7.9	194
148	Short-range structure of Pb1â^xBaxZr0.65Ti0.35O3 ceramic compounds probed by XAS and Raman scattering techniques. Journal of Applied Physics, 2009, 105, 033508.	2.5	13
149	Vanadium Pentoxide Nanostructures: An Effective Control of Morphology and Crystal Structure in Hydrothermal Conditions. Crystal Growth and Design, 2009, 9, 3626-3631.	3.0	112
150	Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. Journal of Alloys and Compounds, 2009, 471, 253-258.	5.5	69
151	Ti K-edge XANES and Pb L _{III} -edge EXAFS studies of PbZr _{0.40} Ti _{0.60} O ₃ ferroelectric material. Journal of Physics: Conference Series, 2009, 190, 012081.	0.4	4
152	Structural characterization of La[sup $3+$] modified Bi[sub 4]Ti[sub 3]O[sub 12] ferroelectric ceramics by XRD and XAS techniques., 2009 ,,.		0
153	Er:YAB nanoparticles and vitreous thin films by the polymeric precursor method. Journal of Nanoparticle Research, 2008, 10, 1251-1262.	1.9	22
154	Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: Joint experimental and theoretical study. Acta Materialia, 2008, 56, 2191-2202.	7.9	132
155	Synthesis optimization, structural evolution and optical properties of Y0.9Er0.1Al3(BO3)4 nanopowders obtained by soft chemistry methods. Solid State Sciences, 2008, 10, 1835-1845.	3.2	27
156	Structural Role of Fluoride in the Ion-Conducting Glass System B ₂ O ₃ â^PbOâ^LiF Studied by Single- and Double-Resonance NMR. Journal of Physical Chemistry C, 2008, 112, 10462-10471.	3.1	14
157	Hydrothermal Microwave: A New Route to Obtain Photoluminescent Crystalline BaTiO ₃ Nanoparticles. Chemistry of Materials, 2008, 20, 5381-5387.	6.7	166
158	Surface modification and crystallization of the BaO–B2O3–SiO2 glassy system using CO2 laser irradiation. Journal of Non-Crystalline Solids, 2008, 354, 279-283.	3.1	7
159	Influence of Structural Disorder on the Photoluminescence Emission of PZT Powders. Journal of Physical Chemistry A, 2008, 112, 8953-8957.	2.5	21
160	Structural conditions that leads to photoluminescence emission in SrTiO3: An experimental and theoretical approach. Journal of Applied Physics, 2008, 104, .	2.5	143
161	Y _{0.9} Er _{0.1} Al ₃ (BO _{3<td>IB>)< 0.9</td><td>SUB>4&t 5</td>}	IB>)< 0.9	SUB>4&t 5
162	Anisotropic Growth of Oxide Nanocrystals:  Insights into the Rutile TiO2 Phase. Journal of Physical Chemistry C, 2007, 111, 5871-5875.	3.1	78

#	Article	IF	Citations
163	Relation between photoluminescence emission and local order-disorder in the CaTiO3 lattice modifier. Applied Physics Letters, 2007, 90, 111904.	3.3	78
164	Experimental and Calculated Ti K-Edge XANES Spectra of Pb1â ''xLaxTiO3 Ferroelectric Ceramic Compounds. AIP Conference Proceedings, 2007, , .	0.4	3
165	X-ray photoelectron spectroscopy study on sintered Pb1â^'xLaxTiO3 ferroelectric ceramics. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 476-481.	1.7	26
166	A sol–gel route for the development of rare-earth aluminum borate nanopowders and transparent thin films. Journal of Solid State Chemistry, 2007, 180, 611-618.	2.9	14
167	Blue-green and red photoluminescence in CaTiO3:Sm. Journal of Luminescence, 2007, 126, 403-407.	3.1	53
168	X-ray powder diffraction structural characterization of Pb _{1â€â^â€<i>x</i>} Ba _{<i>x</i>} Zr _{0.65} Ti _{0.35} O ₃ ceramic. Acta Crystallographica Section B: Structural Science, 2007, 63, 713-718.	1.8	20
169	Electronic structure of Pb1â^'xBaxZr0.65Ti0.35O3ferroelectric compounds probed by soft x-ray absorption spectroscopy. Journal of Physics Condensed Matter, 2007, 19, 226212.	1.8	9
170	Synthesis and characterization of Pb1–xLaxTiO3 nanocrystalline powders. Journal of Thermal Analysis and Calorimetry, 2007, 87, 747-751.	3.6	17
171	Induction of relaxor state in ordinary ferroelectrics by isovalent ion substitution: A pretransitional martensitic texture case. Physical Review B, 2006, 73, .	3.2	23
172	Laser induced modification on 40BaO–45B2O3–15TiO2 glass composition. Journal of Non-Crystalline Solids, 2006, 352, 3398-3403.	3.1	11
173	Thermal properties of barium titanium borate glasses measured by thermal lens technique. Journal of Non-Crystalline Solids, 2006, 352, 3577-3581.	3.1	9
174	Crossover from Ordinary Ferroelectric to Relaxor State: A Pre-Transitional Martensitic Transformation. Ferroelectrics, 2006, 339, 121-128.	0.6	1
175	Crystallization, texture and second-harmonic generation in TiO2–BaO–B2O3 glasses. Optical Materials, 2006, 28, 935-943.	3.6	20
176	Structural Characterization of Pb1â^'xBaxZr0.65Ti0.35O3 Ferroelectric Ceramics. Ferroelectrics, 2006, 339, 219-226.	0.6	8
177	Electronic structure of Pb1â^'xLaxTiO3 ferroelectric materials from Ti 2p and O 1s soft x-ray absorption spectroscopy. Journal of Applied Physics, 2006, 99, 044104.	2.5	24
178	XANES Study of Titanium Environment in BaOB2O3TiO2 System. Physica Scripta, 2005, , 486.	2.5	0
179	Photo-induced effects in Ge25Ga10S65 glasses studied by XPS and XAS. Solid State Ionics, 2005, 176, 1403-1409.	2.7	11
180	Structural studies in the BaO–B2O3–TiO2 system by XAS and 11B-NMR. Journal of Solid State Chemistry, 2005, 178, 1452-1463.	2.9	7

#	Article	lF	Citations
181	XANES Study of LanthanumDoped Lead T. Physica Scripta, 2005, , 378.	2.5	1
182	Structural and optical characterization of beta barium borate thin films grown by electron beam evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2163-2167.	2.1	7
183	Synthesis and Characterization of the Â-BaB2O4Phase Obtained by the Polymeric Precursor Method. Journal of Sol-Gel Science and Technology, 2004, 29, 89-96.	2.4	17
184	XAS and XRD Structural Characterization of Lanthanum-Modified PbTiO3 Ceramic Materials. Journal of Physical Chemistry B, 2004, 108, 14840-14849.	2.6	57
185	Phase evolution of lead titanate from its amorphous precursor synthesized by the OPM wet-chemical route. Journal of Solid State Chemistry, 2004, 177, 1994-2001.	2.9	33
186	β-BaB2O4 nanometric powder obtained from the ternary BaO–B2O3–TiO2 system using the polymeric precursor method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 107, 33-38.	3 . 5	12
187	Synthesis and characterization of beta barium borate thin films obtained from the BaO–B2O3–TiO2 ternary system. Thin Solid Films, 2004, 457, 246-252.	1.8	7
188	Structure study of donor doped barium titan ate prepared from citrate solutions. Science of Sintering, 2004, 36, 179-188.	1.4	24
189	The influence of oxygen in the photoexpansion of GaGeS glasses. Applied Surface Science, 2003, 205, 143-150.	6.1	27
190	Structural studies of a ZrO2–CeO2 doped system. Journal of the European Ceramic Society, 2003, 23, 273-282.	5.7	56
191	Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method. Journal of Physics and Chemistry of Solids, 2003, 64, 833-839.	4.0	47
192	Qn distribution in stoichiometric silicate glasses: thermodynamic calculations and 29Si high resolution NMR measurements. Journal of Non-Crystalline Solids, 2003, 325, 164-178.	3.1	96
193	Local order around of germanium atoms in Ga10Ge25S65 glass by EXAFS. Journal of Non-Crystalline Solids, 2002, 304, 160-166.	3.1	4
194	Surface crystallization of \hat{l}^2 -BaB2O4 phase using a CO2 laser source. Journal of Non-Crystalline Solids, 2002, 306, 309-312.	3.1	22
195	Inhibition of the Anataseâ^'Rutile Phase Transformation with Addition of CeO2to CuOâ^'TiO2System:Â Raman Spectroscopy, X-ray Diffraction, and Textural Studies. Chemistry of Materials, 2002, 14, 2514-2518.	6.7	211
196	Evidence for a new structure in a mixed metal sulphate system by EXAFS. X-Ray Spectrometry, 2002, 31, 162-166.	1.4	0
197	X-ray absorption spectroscopic studies of Mn atoms in La1?xSrxMnO3+? compounds. X-Ray Spectrometry, 2002, 31, 154-157.	1.4	12
198	Grazing incidence X-ray diffraction and atomic force microscopy analysis of BaBi2Ta2O9 thin films. Thin Solid Films, 2002, 415, 57-63.	1.8	6

#	Article	IF	Citations
199	Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts. Journal of Physical Chemistry B, 2001, 105, 10515-10522.	2.6	243
200	X-ray absorption spectroscopy investigation of Ba2TiSi2O8+xSiO2 glasses. Journal of Non-Crystalline Solids, 2001, 282, 181-187.	3.1	10
201	Structural characterization of W-Ni-Al2O3catalysts. Journal of Synchrotron Radiation, 2001, 8, 648-650.	2.4	3
202	Surface Characterisation of V2O5/TiO2 Catalytic System. Physica Status Solidi A, 2001, 187, 161-169.	1.7	23
203	X-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and x-ray diffraction characterization of CuO–TiO2–CeO2 catalyst system. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1150-1157.	2.1	22
204	Chemical and structural characterization of V2O5/TiO2 catalysts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1158-1163.	2.1	14
205	Amorphous lead titanate: a new wide-band gap semiconductor with photoluminescence at room temperature. Advanced Materials for Optics and Electronics, 2000, 10, 235-240.	0.4	58
206	29Si MAS–NMR studies of Qn structural units in metasilicate glasses and their nucleating ability. Journal of Non-Crystalline Solids, 2000, 273, 8-18.	3.1	102
207	Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses. Journal of Non-Crystalline Solids, 2000, 262, 191-199.	3.1	83
208	Crystallization study of SrTiO3 thin films prepared by dip coating. Materials Research, 1999, 2, 93-97.	1.3	18
209	Anisotropic residual stresses in partially crystallized Li2O–2SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 1999, 247, 79-86.	3.1	49
210	XAS Study of CuAl ₂ O ₄ Ceramic System. European Physical Journal Special Topics, 1997, 7, C2-1241-C2-1242.	0.2	1
211	Residual stresses in a soda-lime-silica glass-ceramic. Journal of Non-Crystalline Solids, 1996, 194, 297-304.	3.1	54
212	EXAFS and Raman spectroscopy study of binary indium fluoride glasses. Journal of Materials Science, 1996, 31, 3441-3446.	3.7	17
213	On the structural properties ofaâ€Si1â^'xCx:H thin films. Journal of Applied Physics, 1996, 79, 1324-1329.	2.5	36
214	Comparative EXAFS study of (Ag2X)y(As2X3)1â^'y glasses (X = Se or S). Journal of Non-Crystalline Solids, 1995, 185, 274-282.	3.1	19
215	Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy. Journal of Non-Crystalline Solids, 1993, 159, 213-221.	3.1	85
216	Structural studies in lead fluorogermanate and fluorosilicate glasses. Journal of Alloys and Compounds, 1992, 180, 117-124.	5.5	4

#	Article	IF	CITATIONS
217	Structure of the Agî—'Asî—'Se chalcogenide glasses: the AsSeî—'Ag2Se line. Journal of Non-Crystalline Solids, 1992, 151, 1-12.	3.1	20
218	Asx Se1â^'x system (0.20â‰xâ‰0.57): EXAFS study of the glass region. Journal of Solid State Chemistry, 1992, 96, 301-310.	2.9	22
219	Interaction of Polyhedral Oligomeric Silsesquioxanes (POSS) Modified with a Metallocyano Complex and Their Application Use as Sensor for the Detection of Isoniazid. Journal of the Electrochemical Society, 0, , .	2.9	O