List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5509419/publications.pdf Version: 2024-02-01

DAN HILLTMADK

#	Article	IF	CITATIONS
1	Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. Journal of Innate Immunity, 2022, 14, 335-354.	3.8	5
2	Structure of Nora virus at 2.7ÂÃ resolution and implications for receptor binding, capsid stability and taxonomy. Scientific Reports, 2020, 10, 19675.	3.3	3
3	Editorial: Recent Advances in Drosophila Cellular and Humoral Innate Immunity. Frontiers in Immunology, 2020, 11, 598618.	4.8	5
4	Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics, 2017, 18, 207.	2.8	100
5	Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Scientific Reports, 2017, 7, 15713.	3.3	41
6	Genetic Screen in Drosophila Larvae Links ird1 Function to Toll Signaling in the Fat Body and Hemocyte Motility. PLoS ONE, 2016, 11, e0159473.	2.5	9
7	A Novel Strategy for Live Detection of Viral Infection in Drosophila melanogaster. Scientific Reports, 2016, 6, 26250.	3.3	7
8	Tissue communication in a systemic immune response of <i>Drosophila </i> . Fly, 2016, 10, 115-122.	1.7	33
9	VP3 is crucial for the stability of Nora virus virions. Virus Research, 2016, 223, 20-27.	2.2	4
10	Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathogens, 2016, 12, e1005746.	4.7	136
11	<scp>JAK</scp> / <scp>STAT</scp> signaling in <i> <scp>D</scp> rosophila </i> muscles controls the cellular immune response against parasitoid infection. EMBO Reports, 2015, 16, 1664-1672.	4.5	107
12	Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster. PLoS Pathogens, 2015, 11, e1004895.	4.7	33
13	New ways to make a blood cell. ELife, 2015, 4, .	6.0	0
14	Control of Drosophila Blood Cell Activation via Toll Signaling in the Fat Body. PLoS ONE, 2014, 9, e102568.	2.5	67
15	Drosophila immunity – Glorious past, dynamic present and exciting future. Developmental and Comparative Immunology, 2014, 42, 1-2.	2.3	6
16	Convergent Evolution of Argonaute-2 Slicer Antagonism in Two Distinct Insect RNA Viruses. PLoS Pathogens, 2012, 8, e1002872.	4.7	86
17	The RhoGEF Zizimin-related acts in the Drosophila cellular immune response via the Rho GTPases Rac2 and Cdc42. Developmental and Comparative Immunology, 2012, 38, 160-168.	2.3	20
18	Functional Characterization of the Infection-Inducible Peptide Edin in Drosophila melanogaster. PLoS ONE, 2012, 7, e37153.	2.5	13

#	Article	IF	CITATIONS
19	Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses. Virus Research, 2011, 160, 51-58.	2.2	18
20	Cofilin regulator 14-3-3ζ is an evolutionarily conserved protein required for phagocytosis and microbial resistance. Journal of Leukocyte Biology, 2011, 89, 649-659.	3.3	47
21	RNA Silencing in the Antiviral Innate Immune Defence – Role of DEADâ€box RNA Helicases. Scandinavian Journal of Immunology, 2010, 71, 146-158.	2.7	21
22	Uptake of Aggregating Transthyretin by Fat Body in a Drosophila Model for TTR-Associated Amyloidosis. PLoS ONE, 2010, 5, e14343.	2.5	14
23	Genome-Wide RNA Interference in <i>Drosophila</i> Cells Identifies G Protein-Coupled Receptor Kinase 2 as a Conserved Regulator of NF-κB Signaling. Journal of Immunology, 2010, 184, 6188-6198.	0.8	88
24	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	12.6	808
25	Nora Virus Persistent Infections Are Not Affected by the RNAi Machinery. PLoS ONE, 2009, 4, e5731.	2.5	26
26	Sessile hemocytes as a hematopoietic compartment in <i>Drosophila melanogaster</i> . Proceedings of the United States of America, 2009, 106, 4805-4809.	7.1	225
27	The N-terminal half of the Drosophila Rel/NF-κB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes. Developmental and Comparative Immunology, 2009, 33, 690-696.	2.3	43
28	The Drosophila Nora virus is an enteric virus, transmitted via feces. Journal of Invertebrate Pathology, 2009, 101, 29-33.	3.2	55
29	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255
30	Pirk Is a Negative Regulator of the <i>Drosophila</i> Imd Pathway. Journal of Immunology, 2008, 180, 5413-5422.	0.8	181
31	Evolution of Genes and Repeats in the Nimrod Superfamily. Molecular Biology and Evolution, 2008, 25, 2337-2347.	8.9	64
32	Reciprocal regulation of Rac1 and Rho1 in Drosophila circulating immune surveillance cells. Journal of Cell Science, 2007, 120, 502-511.	2.0	42
33	Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. Journal of General Virology, 2007, 88, 3493-3493.	2.9	3
34	Definition of <i>Drosophila</i> hemocyte subsets by cell-type specific antigens. Acta Biologica Hungarica, 2007, 58, 95-111.	0.7	143
35	The Drosophila NFAT homolog is involved in salt stress tolerance. Insect Biochemistry and Molecular Biology, 2007, 37, 356-362.	2.7	38
36	Comparative genomic analysis of the Tribolium immune system. Genome Biology, 2007, 8, R177.	9.6	271

#	Article	IF	CITATIONS
37	Dynamic evolution of the innate immune system in Drosophila. Nature Genetics, 2007, 39, 1461-1468.	21.4	400
38	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
39	Misfolded transthyretin causes behavioral changes in a <i>Drosophila</i> model for transthyretinâ€associated amyloidosis. European Journal of Neuroscience, 2007, 26, 913-924.	2.6	40
40	Drosophila Immunity: Is Antigen Processing the First Step?. Current Biology, 2007, 17, R22-R24.	3.9	13
41	Nimrod, a Putative Phagocytosis Receptor with EGF Repeats in Drosophila Plasmatocytes. Current Biology, 2007, 17, 649-654.	3.9	291
42	Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15, 645-656.	2.0	855
43	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	27.8	1,648
44	Expression pattern of Filamin-240 in Drosophila blood cells. Gene Expression Patterns, 2006, 6, 928-934.	0.8	16
45	Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. Journal of General Virology, 2006, 87, 3045-3051.	2.9	93
46	Rac1 signalling in the <i>Drosophila</i> larval cellular immune response. Journal of Cell Science, 2006, 119, 2015-2024.	2.0	109
47	<i>Drosophila melanogaster</i> Rac2 is necessary for a proper cellular immune response. Genes To Cells, 2005, 10, 813-823.	1.2	94
48	Invertebrate immunity and the limits of mechanistic immunology. Nature Immunology, 2005, 6, 651-654.	14.5	240
49	Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO Journal, 2005, 24, 3423-3434.	7.8	197
50	A directed screen for genes involved in <i>Drosophila</i> blood cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14192-14197.	7.1	326
51	A rapid rosetting method for separation of hemocyte sub-populations of Drosophila melanogaster. Developmental and Comparative Immunology, 2004, 28, 555-563.	2.3	30
52	Drosophila immunity: paths and patterns. Current Opinion in Immunology, 2003, 15, 12-19.	5.5	532
53	A Cytokine in the Drosophila Stress Response. Developmental Cell, 2003, 5, 360-361.	7.0	5
54	Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2622-2627.	7.1	148

#	Article	IF	CITATIONS
55	Caspase-mediated processing of the Drosophila NF-ÂB factor Relish. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5991-5996.	7.1	294
56	Functional Diversity of the Drosophila PGRP-LC Gene Cluster in the Response to Lipopolysaccharide and Peptidoglycan. Journal of Biological Chemistry, 2003, 278, 26319-26322.	3.4	161
57	Humoral immune response of Simulium damnosum s.l. following filarial and bacterial infections. Parasitology, 2002, 125, 359-66.	1.5	4
58	Requirement for a Peptidoglycan Recognition Protein (PGRP) in Relish Activation and Antibacterial Immune Responses in <i>Drosophila</i> . Science, 2002, 296, 359-362.	12.6	548
59	A Family of Turandot-Related Genes in the Humoral Stress Response of Drosophila. Biochemical and Biophysical Research Communications, 2001, 284, 998-1003.	2.1	154
60	A humoral stress response in Drosophila. Current Biology, 2001, 11, 714-718.	3.9	99
61	A humoral stress response in Drosophila. Current Biology, 2001, 11, 1479.	3.9	26
62	Enteric Bacteria Counteract Lipopolysaccharide Induction of Antimicrobial Peptide Genes. Journal of Immunology, 2001, 167, 6920-6923.	0.8	24
63	A <i>Drosophila</i> lÎ⁰B kinase complex required for Relish cleavage and antibacterial immunity. Genes and Development, 2000, 14, 2461-2471.	5.9	278
64	A family of peptidoglycan recognition proteins in the fruit fly <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13772-13777.	7.1	486
65	Expression and Evolution of the Drosophila Attacin/Diptericin Gene Family. Biochemical and Biophysical Research Communications, 2000, 279, 574-581.	2.1	95
66	Activation of the <i>Drosophila</i> NFâ€₽̂B factor Relish by rapid endoproteolytic cleavage. EMBO Reports, 2000, 1, 347-352.	4.5	278
67	Drosophila cecropin as an antifungal agent. Insect Biochemistry and Molecular Biology, 1999, 29, 965-972.	2.7	126
68	Relish, a Central Factor in the Control of Humoral but Not Cellular Immunity in Drosophila. Molecular Cell, 1999, 4, 827-837.	9.7	480
69	TER94, a Drosophila homolog of the membrane fusion protein CDC48/p97, is accumulated in nonproliferating cells: in the reproductive organs and in the brain of the imago. Insect Biochemistry and Molecular Biology, 1998, 28, 91-98.	2.7	38
70	Cysteine proteinase 1 (CP1), a cathepsin L-like enzyme expressed in the Drosophila melanogaster haemocyte cell line mbn-2. Insect Molecular Biology, 1997, 6, 173-181.	2.0	69
71	HLH106, a Drosophila transcription factor with similarity to the vertebrate sterol responsive element binding protein Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1195-1199.	7.1	41
72	Helix pomatia Lectin, an Inducer of Drosophila Immune Response, Binds to Hemomucin, a Novel Surface Mucin. Journal of Biological Chemistry, 1996, 271, 12708-12715.	3.4	83

#	Article	IF	CITATIONS
73	Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10343-10347.	7.1	317
74	ldentification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochemistry and Molecular Biology, 1995, 25, 511-518.	2.7	118
75	FKBP39, a Drosophila member of a family of proteins that bind the immunosuppressive drug FK506. Gene, 1995, 156, 247-251.	2.2	21
76	Signals from the IL-1 Receptor Homolog, Toll, Can Activate an Immune Response in a Drosophila Hemocyte Cell Line. Biochemical and Biophysical Research Communications, 1995, 209, 111-116.	2.1	118
77	The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Molecular Genetics and Genomics, 1994, 242, 152-162.	2.4	171
78	Ancient relationships. Nature, 1994, 367, 116-117.	27.8	69
79	Macrophage Differentiation Marker MyD88 Is a Member of the Toll/IL-1 Receptor Family. Biochemical and Biophysical Research Communications, 1994, 199, 144-146.	2.1	118
80	<i>Drosophila</i> as a Model System for Antibacterial Peptides. Novartis Foundation Symposium, 1994, 186, 107-122.	1.1	9
81	Immune reactions in Drosophila and other insects: a model for innate immunity. Trends in Genetics, 1993, 9, 178-183.	6.7	423
82	κB-like Motifs Regulate the Induction of Immune Genes in Drosophila. Journal of Molecular Biology, 1993, 232, 327-333.	4.2	221
83	In vitro induction of cecropin genes — an immune response in a Drosophila blood cell line. Biochemical and Biophysical Research Communications, 1992, 188, 1169-1175.	2.1	140
84	The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands. Molecular Genetics and Genomics, 1992, 232, 335-343.	2.4	79
85	CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae. FEBS Journal, 1992, 204, 395-399.	0.2	100
86	Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell, 1986, 44, 429-438.	28.9	515
87	Insect Immunity: Isolation and Structure of Cecropin D and Four Minor Antibacterial Components from Cecropia Pupae. FEBS Journal, 1982, 127, 207-217.	0.2	395
88	Cell-free immunity in insects. Trends in Biochemical Sciences, 1981, 6, 306-309.	7.5	52
89	Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292, 246-248.	27.8	1,317
90	Insect immunity: Galleria mellonella and other lepidoptera have cecropia-P9-like factors active against gram negative bacteria. Insect Biochemistry, 1981, 11, 537-548.	1.8	103

#	Article	IF	CITATIONS
91	Insect Immunity. Purification and Properties of Three Inducible Bactericidal Proteins from Hemolymph of Immunized Pupae of <i>Hyalophora cecropia</i> . FEBS Journal, 1980, 106, 7-16.	0.2	886
92	Ethanol inhibition of vinyl chloride metabolism in isolated eat hepatocytes. Chemico-Biological Interactions, 1979, 25, 1-6.	4.0	14
93	Dichloro-p-nitroanisole O-demethylase—II. Evidence for separate ethanol inhibited and phenobarbital-inducible enzymes. Biochemical Pharmacology, 1979, 28, 1587-1590.	4.4	14
94	Dichloro-p-nitroanisole O-demethylase—A convenient assay for microsomal mixed function oxidase in isolated rat hepatocytes. Biochemical Pharmacology, 1978, 27, 1129-1134.	4.4	17
95	Alkylation of DNA and proteins in mice exposed to vinyl chloride. Biochemical and Biophysical Research Communications, 1977, 76, 259-266.	2.1	131