List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5509052/publications.pdf Version: 2024-02-01

ΟιλΝ-ΗλΟ ΖΗΠ

#	Article	IF	CITATIONS
1	Widespread noncoding circular <scp>RNA</scp> s in plants. New Phytologist, 2015, 208, 88-95.	7.3	374
2	Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 2011, 62, 487-495.	4.8	341
3	A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 2008, 18, 1456-1465.	5.5	332
4	DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biology, 2014, 15, 458.	8.8	243
5	Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of <i>Gossypium</i> spp G3: Genes, Genomes, Genetics, 2015, 5, 1187-1209.	1.8	226
6	Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology, 2009, 9, 149.	3.6	210
7	Long noncoding <scp>RNA</scp> s responsive to <i><scp>F</scp>usarium oxysporum</i> infection in <i><scp>A</scp>rabidopsis thaliana</i> . New Phytologist, 2014, 201, 574-584.	7.3	188
8	miR482 Regulation of NBS-LRR Defense Genes during Fungal Pathogen Infection in Cotton. PLoS ONE, 2013, 8, e84390.	2.5	163
9	The ANTHER INDEHISCENCE1 Gene Encoding a Single MYB Domain Protein Is Involved in Anther Development in Rice. Plant Physiology, 2004, 135, 1514-1525.	4.8	152
10	Molecular Functions of Long Non-Coding RNAs in Plants. Genes, 2012, 3, 176-190.	2.4	139
11	PlantcircBase: A Database for Plant Circular RNAs. Molecular Plant, 2017, 10, 1126-1128.	8.3	131
12	Twenty years of plant genome sequencing: achievements and challenges. Trends in Plant Science, 2022, 27, 391-401.	8.8	125
13	Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene, 2013, 512, 259-266.	2.2	120
14	Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biology, 2017, 14, 1055-1063.	3.1	113
15	Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco. Plant Physiology, 2015, 169, 1062-1071.	4.8	96
16	Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid <i>Brassica napus</i> uncovers key roles for small <scp>RNA</scp> s. Plant Journal, 2017, 91, 874-893.	5.7	95
17	Fineâ€ŧuning the amylose content of rice by precise base editing of the <i>Wx</i> gene. Plant Biotechnology Journal, 2021, 19, 11-13	8.3	95
18	Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2016, 29, 187-196.	2.6	72

#	Article	IF	CITATIONS
19	Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biology, 2012, 12, 28.	3.6	68
20	Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biology, 2003, 3, 6.	3.6	67
21	An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Functional Plant Biology, 2002, 29, 547.	2.1	65
22	Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Reports, 2005, 23, 819-833.	5.6	61
23	Long non-coding RNAs in plants: emerging modulators of gene activity in development and stress responses. Planta, 2020, 252, 92.	3.2	57
24	Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biology, 2017, 17, 37.	3.6	56
25	Diverse genetic mechanisms underlie worldwide convergent rice feralization. Genome Biology, 2020, 21, 70.	8.8	55
26	Genomeâ€wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17, 1998-2010.	8.3	54
27	Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Frontiers in Plant Science, 2014, 5, 743.	3.6	53
28	Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theoretical and Applied Genetics, 2006, 112, 1326-1341.	3.6	51
29	Selection and mutation on microRNA target sequences during rice evolution. BMC Genomics, 2008, 9, 454.	2.8	45
30	Identification, evolution, and expression partitioning of miRNAs in allopolyploid <i>Brassica napus</i> . Journal of Experimental Botany, 2015, 66, 7241-7253.	4.8	44
31	Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2015, 6, 1063.	3.6	43
32	Integrated mapping and characterization of the gene underlying the okra leaf trait in <i>Gossypium hirsutum</i> L. Journal of Experimental Botany, 2016, 67, 763-774.	4.8	43
33	Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica, 2017, 213, 1.	1.2	42
34	Long non-coding RNA-mediated mechanisms independent of the RNAi pathway in animals and plants. RNA Biology, 2011, 8, 404-414.	3.1	41
35	Characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance. BMC Plant Biology, 2020, 20, 125.	3.6	40
36	Identification of phasiRNAs in wild rice (<i>Oryza rufipogon</i>). Plant Signaling and Behavior, 2013, 8, e25079.	2.4	38

#	Article	IF	CITATIONS
37	Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics, 2018, 19, 745.	2.8	38
38	Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Letters, 2007, 581, 4789-4793.	2.8	37
39	De novo transcriptome analysis reveals insights into dynamic homeostasis regulation of somatic embryogenesis in upland cotton (G. hirsutum L.). Plant Molecular Biology, 2016, 92, 279-292.	3.9	37
40	Characteristics of plant circular RNAs. Briefings in Bioinformatics, 2018, , .	6.5	37
41	iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L Plant Molecular Biology, 2018, 96, 89-102.	3.9	36
42	Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. Crop Journal, 2021, 9, 305-312.	5.2	36
43	GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways. Frontiers in Plant Science, 2020, 11, 69.	3.6	35
44	Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. Plant Science, 2006, 171, 308-322.	3.6	34
45	Mutants in the imprinted <i><scp>PICKLE RELATED</scp> 2</i> gene suppress seed abortion of <i>fertilization independent seed</i> class mutants and paternal excess interploidy crosses in Arabidopsis. Plant Journal, 2017, 90, 383-395.	5.7	34
46	Genetic dissection of the fuzzless seed trait in Gossypium barbadense. Journal of Experimental Botany, 2018, 69, 997-1009.	4.8	34
47	Genomic dissection of small <scp>RNA</scp> s in wild rice (<i>Oryza rufipogon</i>): lessons for rice domestication. New Phytologist, 2012, 196, 914-925.	7.3	33
48	Transcriptome Sequencing and Metabolome Analysis Reveal Genes Involved in Pigmentation of Green-Colored Cotton Fibers. International Journal of Molecular Sciences, 2019, 20, 4838.	4.1	33
49	Sequence variation and selection of small RNAs in domesticated rice. BMC Evolutionary Biology, 2010, 10, 119.	3.2	32
50	High-Throughput Sequencing and De Novo Assembly of the Isatis indigotica Transcriptome. PLoS ONE, 2014, 9, e102963.	2.5	32
51	Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants. Frontiers in Plant Science, 2013, 4, 489.	3.6	31
52	Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid. Journal of Plant Physiology, 2017, 215, 132-139.	3.5	31
53	Historical Datasets Support Genomic Selection Models for the Prediction of Cotton Fiber Quality Phenotypes Across Multiple Environments. G3: Genes, Genomes, Genetics, 2018, 8, 1721-1732.	1.8	30
54	Identification and Functional Characterization of a Microtubule-Associated Protein, GhCLASP2, From Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9, 882.	3.6	28

#	Article	IF	CITATIONS
55	GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Science, 2021, 305, 110827.	3.6	28
56	Highly Efficient Targeted Gene Editing in Upland Cotton Using the CRISPR/Cas9 System. International Journal of Molecular Sciences, 2018, 19, 3000.	4.1	27
57	Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus. International Journal of Molecular Sciences, 2016, 17, 705.	4.1	26
58	Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nature Communications, 2022, 13, 689.	12.8	26
59	Breeding Next-Generation Naturally Colored Cotton. Trends in Plant Science, 2021, 26, 539-542.	8.8	24
60	Transcriptome and Complexity-Reduced, DNA-Based Identification of Intraspecies Single-Nucleotide Polymorphisms in the Polyploid <i>Gossypium hirsutum</i> L. G3: Genes, Genomes, Genetics, 2014, 4, 1893-1905.	1.8	22
61	A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana) Tj ETQq1 1 0.7843	14 rgBT /0 2:8	Overlock 10 T
62	Genetic Identification and Transcriptome Analysis of Lintless and Fuzzless Traits in Gossypium arboreum L. International Journal of Molecular Sciences, 2020, 21, 1675.	4.1	19
63	Molecular phylogeny of miR390-guided trans-acting siRNA genes (TAS3) in the grass family. Plant Systematics and Evolution, 2009, 283, 125-132.	0.9	18
64	CRISPR/Cas9â€ŧargeted mutagenesis of the OsROS1 gene induces pollen and embryo sac defects in rice. Plant Biotechnology Journal, 2020, 18, 1999-2001.	8.3	18
65	Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L Euphytica, 2016, 210, 135-142.	1.2	17
66	Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. Journal of Experimental Botany, 2017, 68, 4559-4569.	4.8	15
67	Expansion of <i>MIR482/2118</i> by a classâ€ll transposable element in cotton. Plant Journal, 2020, 103, 2084-2099.	5.7	15
68	Transcriptome Analysis and RNA Interference Reveal GhGDH2 Regulating Cotton Resistance to Verticillium Wilt by JA and SA Signaling Pathways. Frontiers in Plant Science, 2021, 12, 654676.	3.6	15
69	Intron-targeted gene insertion in rice using CRISPR/Cas9: A case study of the Pi-ta gene. Crop Journal, 2020, 8, 424-431.	5.2	14
70	Recent origination of circular RNAs in plants. New Phytologist, 2022, 233, 515-525.	7.3	14
71	CRISPR/Cas9â€mediated saturated mutagenesis of the cotton <i>MIR482</i> family for dissecting the functionality of individual members in disease response. Plant Direct, 2022, 6, .	1.9	14
72	RiceRelativesGD: a genomic database of rice relatives for rice research. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	13

#	Article	IF	CITATIONS
73	Transposon Insertional Mutants: A Resource for Rice Functional Genomics. , 2007, , 223-271.		12
74	compact shoot and leafy head 1, a mutation affects leaf initiation and developmental transition in rice (Oryza sativa L.). Plant Cell Reports, 2007, 26, 421-427.	5.6	12
75	GhFAD2–3 is required for anther development in Gossypium hirsutum. BMC Plant Biology, 2019, 19, 393.	3.6	12
76	Characterization and transcriptome analysis of a dominant genic male sterile cotton mutant. BMC Plant Biology, 2020, 20, 312.	3.6	12
77	Transcriptomic analysis of gene expression of Verticillium dahliae upon treatment of the cotton root exudates. BMC Genomics, 2020, 21, 155.	2.8	12
78	Characterization and evolution of gene clusters for terpenoid phytoalexin biosynthesis in tobacco. Planta, 2019, 250, 1687-1702.	3.2	11
79	Efficient Breeding of Early-Maturing Rice Cultivar by Editing PHYC via CRISPR/Cas9. Rice, 2021, 14, 86.	4.0	11
80	Gene Modules Co-regulated with Biosynthetic Gene Clusters for Allelopathy between Rice and Barnyardgrass. International Journal of Molecular Sciences, 2019, 20, 3846.	4.1	9
81	Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L International Journal of Molecular Sciences, 2021, 22, 2642.	4.1	9
82	Rice bioinformatics in the genomic era: Status and perspectives. Crop Journal, 2021, 9, 609-621.	5.2	9
83	Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice. Plant Biotechnology Journal, 2021, 19, 2662-2672.	8.3	9
84	Transposon Insertional Mutagenesis in Rice. Methods in Molecular Biology, 2011, 678, 147-177.	0.9	8
85	PlantcircBase 7.0: Full-length transcripts and conservation of plant circRNAs. Plant Communications, 2022, 3, 100343.	7.7	8
86	Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant Journal, 2022, 111, 1354-1367.	5.7	8
87	Explore the gene network regulating the composition of fatty acids in cottonseed. BMC Plant Biology, 2021, 21, 177.	3.6	7
88	Genetic mapping and transcriptomic characterization of a new fuzzless-tufted cottonseed mutant. G3: Genes, Genomes, Genetics, 2021, 11, 1-14.	1.8	7
89	Transcriptome Analysis Reveals Differences in Anthocyanin Accumulation in Cotton (Gossypium) Tj ETQq1 1 0.	784314 rgE 3.6	BT /Overlock 1
90	Cotton Breeding in Australia: Meeting the Challenges of the 21st Century. Frontiers in Plant Science, 2022, 13, .	3.6	7

#	Article	IF	CITATIONS
91	GhAlaRP, a cotton alanine rich protein gene, involves in fiber elongation process. Crop Journal, 2021, 9, 313-324.	5.2	5
92	Mapping-by-sequencing enabled fast forward genetics in crops with complex genomes CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-12.	1.0	5
93	Identification and Characterization of Cinnamyl Alcohol Dehydrogenase Encoding Genes Involved in Lignin Biosynthesis and Resistance to Verticillium dahliae in Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2022, 13, 840397.	3.6	5
94	Rice Gene Machine: A Vehicle for Finding Functions of Cereal Genes. Asia Pacific Biotech News, 2002, 06, 936-942.	0.0	4
95	RGMIMS: a web-based Laboratory Information Management System for plant functional genomics research. Molecular Breeding, 2008, 22, 151-157.	2.1	4
96	Functions of miRNAs in Rice. Signaling and Communication in Plants, 2012, , 149-176.	0.7	4
97	Genome-wide identification and characterization of the homeodomain-leucine zipper I family of genes in cotton (Gossypium spp.). Plant Gene, 2016, 7, 50-61.	2.3	4
98	Effects of Sample Size on Plant Single-Cell RNA Profiling. Current Issues in Molecular Biology, 2021, 43, 1685-1697.	2.4	4
99	Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods. Heredity, 2022, 129, 103-112.	2.6	3
100	Transcriptome Profiling Provides New Insights into the Molecular Mechanism Underlying the Sensitivity of Cotton Varieties to Mepiquat Chloride. International Journal of Molecular Sciences, 2022, 23, 5043.	4.1	2
101	Generation of Plant Small RNA cDNA Libraries for High-Throughput Sequencing. Methods in Molecular Biology, 2012, 894, 123-137.	0.9	1
102	Identification of IncRNAs Using Computational and Experimental Approaches. , 2012, , 319-340.		0