Sylvie Dinant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/550848/publications.pdf

Version: 2024-02-01

44 2,309 26 46
papers citations h-index g-index

51 51 51 2773
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Current Biology, 2013, 23, 697-702.	3.9	214
2	Diversity of the Superfamily of Phloem Lectins (Phloem Protein 2) in Angiosperms. Plant Physiology, 2003, 131, 114-128.	4.8	182
3	Compatible plant-aphid interactions: How aphids manipulate plant responses. Comptes Rendus - Biologies, 2010, 333, 516-523.	0.2	179
4	Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus - Biologies, 2010, 333, 504-515.	0.2	156
5	Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology, 2005, 57, 517-540.	3.9	137
6	Disruption of the Sugar Transporters AtSWEET11 and AtSWEET12 Affects Vascular Development and Freezing Tolerance in Arabidopsis. Molecular Plant, 2015, 8, 1687-1690.	8.3	121
7	Lettuce mosaic virus. Plant Pathology, 1992, 41, 528-542.	2.4	87
8	Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant Journal, 2003, 36, 67-81.	5.7	84
9	Binding Properties of the <i>N</i> -Acetylglucosamine and High-Mannose <i>N</i> -Glycan PP2-A1 Phloem Lectin in Arabidopsis. Plant Physiology, 2010, 153, 1345-1361.	4.8	83
10	The phloem pathway: New issues and old debates. Comptes Rendus - Biologies, 2010, 333, 307-319.	0.2	76
11	At <i>bhlh68</i> transcription factor contributes to the regulation of <scp>ABA</scp> homeostasis and drought stress tolerance in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2017, 160, 312-327.	5.2	76
12	Soluble and filamentous proteins in <i>Arabidopsis</i> sieve elements. Plant, Cell and Environment, 2012, 35, 1258-1273.	5.7	68
13	Plasmodesmata and plant cytoskeleton. Trends in Plant Science, 2001, 6, 326-330.	8.8	66
14	Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant, Cell and Environment, 2007, 30, 187-201.	5.7	66
15	Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves. PLoS ONE, 2015, 10, e0118122.	2.5	58
16	Bromovirus RNA replication and transcription require compatibility between the polymerase- and helicase-like viral RNA synthesis proteins. Journal of Virology, 1993, 67, 7181-7189.	3.4	58
17	Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. Journal of Experimental Botany, 2018, 69, 4379-4393.	4.8	51
18	Phloem Protein Partners of <i>Cucurbit aphid borne yellows virus</i> Phloem Proteins in Virus Transmission by Aphids. Molecular Plant-Microbe Interactions, 2010, 23, 799-810.	2.6	43

#	Article	IF	CITATIONS
19	Heterologous Resistance to Potato Virus Y in Transgenic Tobacco Plants Expressing the Coat Protein Gene of Lettuce Mosaic Potyvirus. Phytopathology, 1993, 83, 818.	2.2	39
20	Nucleotide sequence of the 3? terminal region of lettuce mosaic potyvirus RNA shows a Gln/Val dipeptide at the cleavage site between the polymerase and the coat protein. Archives of Virology, 1991, 116, 235-252.	2.1	36
21	Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Molecular Breeding, 1997, 3, 75-86.	2.1	36
22	Gene expression profiling: keys for investigating phloem functions. Trends in Plant Science, 2008, 13, 273-280.	8.8	34
23	Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the Arabidopsis Thaliana Inflorescence. International Journal of Molecular Sciences, 2019, 20, 3167.	4.1	32
24	Phloem specific expression driven by wheat dwarf geminivirus V-sense promoter in transgenic dicotyledonous species. Physiologia Plantarum, 2004, 121, 108-116.	5.2	31
25	Lateral Transport of Organic and Inorganic Solutes. Plants, 2019, 8, 20.	3.5	31
26	Increased Expression of a Phloem Membrane Protein Encoded by <i>NHL26</i> and Sugar Partitioning in <i>Arabidopsis</i> Plant Cell, 2013, 25, 1689-1708.	6.6	29
27	Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. Plant Science, 2016, 252, 347-357.	3.6	26
28	Sampling and Analysis of Phloem Sap. Methods in Molecular Biology, 2013, 953, 185-194.	0.9	23
29	Combined microscopy and molecular analyses show phloem occlusions and cell wall modifications in tomato leaves in response to â€~ <i>Candidatus</i> Phytoplasma solani'. Journal of Microscopy, 2016, 263, 212-225.	1.8	22
30	Phloem: the integrative avenue for resource distribution, signaling, and defense. Frontiers in Plant Science, 2013, 4, 471.	3.6	18
31	Synthesis of (\hat{a})-strand RNA from the $3\hat{a}\in^2$ untranslated region of plant viral genomes expressed in transgenic plants upon infection with related viruses. Journal of General Virology, 2000, 81, 1121-1126.	2.9	18
32	Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues. Journal of Experimental Botany, 2019, 70, 871-884.	4.8	13
33	Live-Cell Imaging of Fluorescently Tagged Phloem Proteins with Confocal Microscopy. Methods in Molecular Biology, 2019, 2014, 95-108.	0.9	12
34	A vacuolar hexose transport is required for xylem development in the inflorescence stem. Plant Physiology, 2022, 188, 1229-1247.	4.8	12
35	Involvement of SUT1 and SUT2 Sugar Transporters in the Impairment of Sugar Transport and Changes in Phloem Exudate Contents in Phytoplasma-Infected Plants. International Journal of Molecular Sciences, 2021, 22, 745.	4.1	10
36	Title is missing!. European Journal of Plant Pathology, 1998, 104, 377-382.	1.7	9

#	Article	IF	CITATIONS
37	Plant nitrate supply regulates <i>Erwinia amylovora</i> virulence gene expression in <i>Arabidopsis</i> . Molecular Plant Pathology, 2021, 22, 1332-1346.	4.2	9
38	Arabidopsis Natural Accessions Display Adaptations in Inflorescence Growth and Vascular Anatomy to Withstand High Salinity during Reproductive Growth. Plants, 2019, 8, 61.	3.5	8
39	Impacts of environmental conditions, and allelic variation of cytosolic glutamine synthetase on maize hybrid kernel production. Communications Biology, 2021, 4, 1095.	4.4	8
40	Relationship of the pelargonium flower break carmovirus (PFBV) coat protein gene with that of other carmoviruses. Archives of Virology, 1998, 143, 1823-1829.	2.1	7
41	Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. Physiologia Plantarum, 2022, 174, e13684.	5.2	6
42	Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. Journal of Plant Physiology, 2022, 273, 153707.	3.5	5
43	The rendez-vous of mobile sieve-element and abundant companion-cell proteins. Current Opinion in Plant Biology, 2018, 43, 108-112.	7.1	3
44	Des ponts entre les cellules végétales. Biofutur, 2000, 2000, 36-41.	0.0	1