
Tristan Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5508249/publications.pdf Version: 2024-02-01

TDISTAN DETIT

#	Article	IF	CITATIONS
1	Effects of oxidative adsorbates and cluster formation on the electronic structure of nanodiamonds. Journal of Computational Chemistry, 2022, 43, 923-929.	3.3	6
2	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	14.9	59
3	Role of Dopants on the Local Electronic Structure of PolymericÂCarbon Nitride Photocatalysts. Small Methods, 2021, 5, e2000707.	8.6	11
4	Impact of Nitrogen, Boron and Phosphorus Impurities on the Electronic Structure of Diamond Probed by X-ray Spectroscopies. Journal of Carbon Research, 2021, 7, 28.	2.7	1
5	Soft X-ray spectroscopy of light elements in energy storage materials. Energy Storage Materials, 2021, 40, 72-95.	18.0	10
6	Nanostructured Boron Doped Diamond Electrodes with Increased Reactivity for Solarâ€Driven CO ₂ Reduction in Room Temperature Ionic Liquids. ChemCatChem, 2020, 12, 5548-5557.	3.7	15
7	Impact of Cation Intercalation on the Electronic Structure of Ti ₃ C ₂ T _{<i>x</i>} MXenes in Sulfuric Acid. ACS Applied Materials & Interfaces, 2020, 12, 15087-15094.	8.0	32
8	Spatially resolved X-ray absorption spectroscopy investigation of individual cation-intercalated multi-layered Ti3C2Tx MXene particles. Applied Surface Science, 2020, 530, 147157.	6.1	10
9	Enhancement of Ti ₃ C ₂ MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 5079-5086.	3.1	46
10	Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis. Applied Catalysis B: Environmental, 2019, 259, 118027.	20.2	35
11	Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale, 2019, 11, 2056-2064.	5.6	94
12	Uncovering the Charge Transfer between Carbon Dots and Water by In Situ Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 3843-3848.	4.6	13
13	Theoretical X-ray absorption spectroscopy database analysis for oxidised 2D carbon nanomaterials. Physical Chemistry Chemical Physics, 2019, 21, 6999-7008.	2.8	12
14	Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy and Environmental Science, 2018, 11, 566-571.	30.8	304
15	FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond and Related Materials, 2018, 89, 52-66.	3.9	214
16	Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials. Journal of Materials Chemistry A, 2018, 6, 16645-16654.	10.3	14
17	Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. Journal of Physical Chemistry C, 2017, 121, 5185-5194.	3.1	104
18	Interactions with solvent. , 2017, , 301-321.		2

Interactions with solvent. , 2017, , 301-321. 18

TRISTAN PETIT

#	Article	IF	CITATIONS
19	Xâ€Ray Absorption Spectroscopy of TiO ₂ Nanoparticles in Water Using a Holey Membraneâ€Based Flow Cell. Advanced Materials Interfaces, 2017, 4, 1700755.	3.7	11
20	Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects. Advanced Functional Materials, 2017, 27, 1604571.	14.9	58
21	Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials, 2015, 61, 290-298.	11.4	62
22	Fluorination-dependent molecular orbital occupancy in ring-shaped perfluorocarbons. Physical Chemistry Chemical Physics, 2015, 17, 18337-18343.	2.8	6
23	Valence holes observed in nanodiamonds dispersed in water. Nanoscale, 2015, 7, 2987-2991.	5.6	33
24	Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials, 2015, 45, 93-98.	11.4	49
25	Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion. Journal of Physical Chemistry Letters, 2015, 6, 2909-2912.	4.6	54
26	Surface graphitization of ozone-treated detonation nanodiamonds. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2739-2743.	1.8	9
27	Dumbbell fluidic tweezers: Enhanced trapping and manipulation of microscale objects using mobile microvortices. , 2014, , .		2
28	HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films. Applied Surface Science, 2014, 305, 160-166.	6.1	6
29	Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 23415-23425.	3.1	46
30	Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology, 2014, 8, 46-56.	3.0	116
31	The electronic structure of perfluorodecalin studied by soft X-ray spectroscopy and electronic structure calculations. Physical Chemistry Chemical Physics, 2014, 16, 23379-23385.	2.8	3
32	Surface potential of diamond and gold nanoparticles can be locally switched by surrounding materials or applied voltage. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	10
33	Tritium labeling of detonation nanodiamonds. Chemical Communications, 2014, 50, 2916-2918.	4.1	29
34	Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications. Structural Dynamics, 2014, 1, 034901.	2.3	22
35	Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale, 2013, 5, 8958.	5.6	65
36	Nanoparticles Assume Electrical Potential According to Substrate, Size, and Surface Termination. Langmuir, 2013, 29, 1634-1641.	3.5	41

Tristan Petit

#	ARTICLE	IF	CITATIONS
37	Nanodiamond as a multimodal platform for drug delivery and radiosensitization of tumor cells. , 2013, , .		1
38	Switching polarity of oxidized detonation diamond nanoparticles on substrates. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2095-2099.	1.8	0
39	Selective Trapping and Manipulation of Microscale Objects Using Mobile Microvortices. Nano Letters, 2012, 12, 156-160.	9.1	153
40	Targeted cargo delivery using a rotating nickel nanowire. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1074-1080.	3.3	120
41	Oxygen hole doping of nanodiamond. Nanoscale, 2012, 4, 6792.	5.6	61
42	Surface properties of hydrogenated nanodiamonds: a chemical investigation. Physical Chemistry Chemical Physics, 2011, 13, 11517.	2.8	116
43	Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Physical Review B, 2011, 84, .	3.2	116
44	Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. Physical Chemistry Chemical Physics, 2011, 13, 11481.	2.8	71
45	Electrochemically Stimulated Release from Liposomes Embedded in a Polyelectrolyte Multilayer. Advanced Functional Materials, 2011, 21, 1666-1672.	14.9	28
46	Nickel nanowire swimmers for colloidal cargo transport near a solid surface. , 2011, , .		0
47	Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires near a Patterned Solid Surface. ACS Nano, 2010, 4, 6228-6234.	14.6	269
48	Noncontact and contact micromanipulation using a rotating nickel nanowire. , 2010, , .		0
49	Motion control of artificial bacterial flagella. , 2010, , .		4