Alexei F Kisselev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5507978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Site-Specific Proteasome Inhibitors. Biomolecules, 2022, 12, 54.	4.0	24
2	Activity of immunoproteasome inhibitor ONX-0914 in acute lymphoblastic leukemia expressing MLL–AF4 fusion protein. Scientific Reports, 2021, 11, 10883.	3.3	20
3	DNA-Histone Cross-Links: Formation and Repair. Frontiers in Cell and Developmental Biology, 2020, 8, 607045.	3.7	12
4	Structureâ€Based Design of Fluorogenic Substrates Selective for Human Proteasome Subunits. ChemBioChem, 2020, 21, 3220-3224.	2.6	2
5	Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits. Journal of Medicinal Chemistry, 2019, 62, 1626-1642.	6.4	23
6	An inhibitor of proteasome β2 sites sensitizes myeloma cells to immunoproteasome inhibitors. Blood Advances, 2018, 2, 2443-2451.	5.2	27
7	Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation. Cell Chemical Biology, 2017, 24, 218-230.	5.2	83
8	Asymmetric Synthesis of Lysine Analogues with Reduced Basicity, and their Incorporation into Proteasome Inhibitors. European Journal of Organic Chemistry, 2017, 2017, 5921-5934.	2.4	3
9	A Set of Activityâ€Based Probes to Visualize Human (Immuno)proteasome Activities. Angewandte Chemie, 2016, 128, 4271-4275.	2.0	9
10	Structure-Based Design of β5c Selective Inhibitors of Human Constitutive Proteasomes. Journal of Medicinal Chemistry, 2016, 59, 7177-7187.	6.4	19
11	A Set of Activityâ€Based Probes to Visualize Human (Immuno)proteasome Activities. Angewandte Chemie - International Edition, 2016, 55, 4199-4203.	13.8	86
12	The novel Â2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells. Haematologica, 2015, 100, 1350-1360.	3.5	39
13	Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Current Opinion in Chemical Biology, 2014, 23, 16-22.	6.1	56
14	Structure-Based Design of β1i or β5i Specific Inhibitors of Human Immunoproteasomes. Journal of Medicinal Chemistry, 2014, 57, 6197-6209.	6.4	89
15	Cell-line-specific high background in the Proteasome-Glo assay of proteasome trypsin-like activity. Analytical Biochemistry, 2014, 451, 1-3.	2.4	3
16	A Novel Bullet Hits the Proteasome. Cancer Cell, 2013, 24, 691-693.	16.8	8
17	Incorporation of Non-natural Amino Acids Improves Cell Permeability and Potency of Specific Inhibitors of Proteasome Trypsin-like Sites. Journal of Medicinal Chemistry, 2013, 56, 1262-1275.	6.4	79
18	Molecular Basis of Differential Sensitivity of Myeloma Cells to Clinically Relevant Bolus Treatment with Bortezomib. PLoS ONE, 2013, 8, e56132.	2.5	47

Alexei F Kisselev

#	Article	IF	CITATIONS
19	Discovery of a potent and highly β1 specific proteasome inhibitor from a focused library of urea-containing peptide vinyl sulfones and peptide epoxyketones. Organic and Biomolecular Chemistry, 2012, 10, 181-194.	2.8	28
20	Why the Structure but Not the Activity of the Immunoproteasome Subunit Low Molecular Mass Polypeptide 2 Rescues Antigen Presentation. Journal of Immunology, 2012, 189, 1868-1877.	0.8	43
21	Proteasome Inhibitors: An Expanding Army Attacking a Unique Target. Chemistry and Biology, 2012, 19, 99-115.	6.0	464
22	Specific Cell-Permeable Inhibitor of Proteasome Trypsin-like Sites Selectively Sensitizes Myeloma Cells to Bortezomib and Carfilzomib. Chemistry and Biology, 2011, 18, 608-618.	6.0	94
23	Nature of Pharmacophore Influences Active Site Specificity of Proteasome Inhibitors*. Journal of Biological Chemistry, 2010, 285, 40125-40134.	3.4	55
24	Incorporation of Fluorinated Phenylalanine Generates Highly Specific Inhibitor of Proteasome's Chymotrypsin-like Sites. Journal of Medicinal Chemistry, 2010, 53, 2319-2323.	6.4	32
25	A panel of subunit-selective activity-based proteasome probes. Organic and Biomolecular Chemistry, 2010, 8, 2719.	2.8	47
26	Selective Inhibitor of Proteasome's Caspase-like Sites Sensitizes Cells to Specific Inhibition of Chymotrypsin-like Sites. Chemistry and Biology, 2009, 16, 1278-1289.	6.0	147
27	Joining the Army of Proteasome Inhibitors. Chemistry and Biology, 2008, 15, 419-421.	6.0	31
28	A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3402-3405.	2.2	42
29	Importance of the Different Proteolytic Sites of the Proteasome and the Efficacy of Inhibitors Varies with the Protein Substrate. Journal of Biological Chemistry, 2006, 281, 8582-8590.	3.4	359
30	Monitoring Activity and Inhibition of 26S Proteasomes with Fluorogenic Peptide Substrates. Methods in Enzymology, 2005, 398, 364-378.	1.0	294
31	The Caspase-like Sites of Proteasomes, Their Substrate Specificity, New Inhibitors and Substrates, and Allosteric Interactions with the Trypsin-like Sites. Journal of Biological Chemistry, 2003, 278, 35869-35877.	3.4	167
32	Binding of Hydrophobic Peptides to Several Non-catalytic Sites Promotes Peptide Hydrolysis by All Active Sites of 20 S Proteasomes. Journal of Biological Chemistry, 2002, 277, 22260-22270.	3.4	161
33	Proteasome inhibitors: from research tools to drug candidates. Chemistry and Biology, 2001, 8, 739-758.	6.0	1,053
34	Proteasome Active Sites Allosterically Regulate Each Other, Suggesting a Cyclical Bite-Chew Mechanism for Protein Breakdown. Molecular Cell, 1999, 4, 395-402.	9.7	262
35	Protein degradation by the proteasome and dissection of its in vivo importance with synthetic inhibitors. Molecular Biology Reports, 1997, 24, 69-75.	2.3	27