Rasha Mohamed El Nashar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/550771/publications.pdf

Version: 2024-02-01

63 papers 1,115 citations

20 h-index 30 g-index

63 all docs

63
docs citations

63 times ranked

881 citing authors

#	Article	IF	CITATIONS
1	Recent advances in the chromatographic determination of the most commonly used antiâ€hepatitis C drug sofosbuvir and its coâ€administered drugs in human plasma. Biomedical Chromatography, 2022, 36, e5238.	1.7	2
2	Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens. Current Opinion in Electrochemistry, 2022, 31, 100848.	4.8	43
3	Multivariate experimental design: towards more reliable electrochemical detection. Current Opinion in Electrochemistry, 2022, 31, 100880.	4.8	3
4	Voltammetric determination of <i>Salmonella typhimurium</i> in minced beef meat using a chip-based imprinted sensor. RSC Advances, 2022, 12, 3445-3453.	3.6	12
5	Electrochemical detection of Bisphenol A in plastic bottled drinking waters and soft drinks based on molecularly imprinted polymer. Journal of Environmental Chemical Engineering, 2022, 10, 107699.	6.7	15
6	Application of Molecularly Imprinted Poly-Itaconic/Multiwalled Carbon Nanotubes for Selective and Sensitive Electrochemical Detection of Linagliptin. Journal of the Electrochemical Society, 2022, 169, 056504.	2.9	4
7	Computational Design and Application of Molecularly Imprinted/MWCNT Based Electrochemical Sensor for the Determination of Silodosin. Electroanalysis, 2022, 34, 1802-1820.	2.9	6
8	Molecularly imprinted polymers for selective extraction of rosmarinic acid from Rosmarinus officinalis L Food Chemistry, 2021, 335, 127644.	8.2	39
9	Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Frontiers in Bioengineering and Biotechnology, 2021, 9, 648704.	4.1	29
10	Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors, 2021, 21, 3150.	3.8	23
11	High selectivity detection of FMDV- SAT-2 using a newly-developed electrochemical nanosensors. Biosensors and Bioelectronics, 2021, 191, 113435.	10.1	19
12	Design and application of molecularly imprinted Polypyrrole/Platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchemical Journal, 2021, 171, 106771.	4.5	17
13	Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules, 2021, 26, 6515.	3.8	27
14	Application of a Conducting Poly-Methionine/Gold Nanoparticles-Modified Sensor for the Electrochemical Detection of Paroxetine. Polymers, 2021, 13, 3981.	4.5	8
15	SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sensors, 2021, 6, 4098-4107.	7.8	48
16	Fabrication of Magnetic Molecularly Imprinted Beaded Fibers for Rosmarinic Acid. Nanomaterials, 2020, 10, 1478.	4.1	13
17	Computational design of molecularly imprinted polymer for electrochemical sensing and stability indicating study of sofosbuvir. Microchemical Journal, 2020, 158, 105180.	4.5	21
18	t-Butyl calixarene/Fe2O3@MWCNTs composite-based potentiometric sensor for determination of ivabradine hydrochloride in pharmaceutical formulations. Materials Science and Engineering C, 2020, 116, 111110.	7.3	28

#	Article	IF	Citations
19	Characterization and Performance Analysis of an Adsorptive Polyacrylonitrile based Hydrogel for Heavy Metals Removal. International Journal of Recent Technology and Engineering, 2020, 9, 283-291.	0.2	1
20	Validation and Application of Molecularly Imprinted Polymers for SPE/UPLC–MS/MS Detection of Gemifloxacin Mesylate. Chromatographia, 2019, 82, 1617-1631.	1.3	8
21	Designing and fabrication of new VIP biosensor for the rapid and selective detection of foot-and-mouth disease virus (FMDV). Biosensors and Bioelectronics, 2019, 141, 111467.	10.1	30
22	Computational design of molecularly imprinted polymer for solid phase extraction of moxifloxacin hydrochloride from Avalox® tablets and spiked human urine samples. Microchemical Journal, 2019, 148, 51-56.	4.5	12
23	Molecularly imprinted polymer/reduced graphene oxide‒based carbon‒paste sensor for highly sensitive determination of the anti‒HCV drug daclatasvir dihydrochloride. Sensors and Actuators B: Chemical, 2019, 283, 6-17.	7.8	32
24	Isolation of sinapic acid from broccoli using molecularly imprinted polymers. Journal of Separation Science, 2018, 41, 1164-1172.	2.5	19
25	Electrochemical Detection of the Different Species of Levofloxacin Using PVC, Carbon Paste and Screen-Printed Electrodes: Effect of pH. Journal of Analysis and Testing, 2018, 2, 175-183.	5.1	3
26	Calixarene-doped PVC polymeric films as size-selective optical sensors: Monitoring of salicylate in real samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 98-104.	3.9	7
27	Moxifloxacin hydrochloride electrochemical detection based on newly designed molecularly imprinted polymer. Sensors and Actuators B: Chemical, 2018, 275, 127-136.	7.8	39
28	Voltammetric Determination of Valaciclovir Using a Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Electroanalysis, 2017, 29, 1388-1399.	2.9	16
29	Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids. Materials Science and Engineering C, 2017, 76, 123-129.	7.3	32
30	Computational Design, Synthesis and Application of a New Selective Molecularly Imprinted Polymer for Electrochemical Detection. Electroanalysis, 2016, 28, 1530-1538.	2.9	33
31	Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates. International Journal of Advanced Robotic Systems, 2016, 13, 123.	2.1	17
32	Molecularly imprinted polymer-based bulk optode for the determination of itopride hydrochloride in physiological fluids. Biosensors and Bioelectronics, 2016, 85, 740-742.	10.1	11
33	Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Analytica Chimica Acta, 2015, 877, 80-89.	5.4	62
34	Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosensors and Bioelectronics, 2015, 65, 108-114.	10.1	55
35	Enantiomeric Separation of Underivatized Amino Acids: Predictability of Chiral Recognition on Ristocetin A Chiral Stationary Phase. Chirality, 2014, 26, 132-135.	2.6	11
36	Predictability of Enantiomeric Chromatographic Behavior on Various Chiral Stationary Phases Using Typical Reversed Phase Modeling Software. Chirality, 2013, 25, 506-513.	2.6	8

#	Article	IF	Citations
37	A New Validated Potentiometric Method for Batch and Continuous Quality Control Monitoring of Oseltamivir Phosphate (Taminil) in Drug Formulations and Biological Fluids. Electroanalysis, 2013, 25, 408-416.	2.9	5
38	Determination of the design space of the HPLC analysis of water-soluble vitamins. Journal of Separation Science, 2013, 36, 1703-1710.	2.5	12
39	Dissolution testing and potentiometric determination of famciclovir in pure, dosage forms and biological fluids. Bioelectrochemistry, 2013, 89, 26-33.	4.6	13
40	Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode. Talanta, 2012, 96, 161-167.	5.5	12
41	Potentiometric determination of tolterodine in batch and flow injection conditions. Talanta, 2012, 96, 153-160.	5. 5	9
42	Construction and performance characteristics of new ion selective electrodes based on carbon nanotubes for determination of meclofenoxate hydrochloride. Analytica Chimica Acta, 2012, 730, 99-111.	5 . 4	21
43	Potentiometric Determination of Sibutramine Using Batch and Flow Injection Analysis. Analytical Letters, 2011, 44, 241-257.	1.8	12
44	Mini Review: Determination of Sildenafil Citrate in Pharmaceutical Prepaprations. Analytical Letters, 2011, 44, 2085-2093.	1.8	4
45	Dissolution Testing and Potentiometric Assay of Sertraline Hydrochloride in Batch and FIA Conditions. Analytical Letters, 2011, 44, 1713-1727.	1.8	4
46	Application of Oxybutynin Selective Sensors for Monitoring the Dissolution Profile and Assay of Pharmaceutical Dosage Forms. Analytical Sciences, 2010, 26, 437-442.	1.6	8
47	Vinpocetine Chemical Sensor for Its Dissolution Testing, Assay and as HPLC Detector. Sensor Letters, 2010, 8, 838-847.	0.4	6
48	Applications of Calixarenes as Potential Ionophores for Electrochemical Sensors. Current Analytical Chemistry, 2009, 5, 249-270.	1.2	21
49	Determination of Orciprenaline Using a Flow Injection Analysis System with Sequential Potentiometric and Spectrophotometric Detection. Analytical Letters, 2008, 41, 949-964.	1.8	5
50	Flow Injection Potentiometric Assay of Hexoprenaline in Its Pure State, Pharmaceutical Preparations, and Biological Samples. Journal of Automated Methods and Management in Chemistry, 2008, 2008, 1-11.	0.5	5
51	Flow-injection potentiometric determination of clobutinol hydrochloride in pure state and pharmaceutical preparations. Journal of Analytical Chemistry, 2007, 62, 977-986.	0.9	1
52	Flow-injection potentiometric and conductometric determination of papaverine hydrochloride in the parent substance and a related pharmaceutical preparation. Pharmaceutical Chemistry Journal, 2007, 41, 447-454.	0.8	11
53	Flow Injection Potentiometric Determination of Dothiepin Hydrochloride. Analytical Letters, 2004, 37, 3237-3254.	1.8	11
54	Flow injection potentiometric determination of amitriptyline hydrochloride. Microchemical Journal, 2004, 78, 107-113.	4.5	23

#	Article	IF	CITATIONS
55	POTENTIOMETRIC FLOW INJECTION DETERMINATION OF SALBUTAMOL. Analytical Letters, 2002, 35, 39-52.	1.8	12
56	Flow injection potentiometric determination of pipazethate hydrochloride. Analyst, The, 2001, 126, 79-85.	3.5	53
57	Conductimetric determination of reproterol HCl and pipazethate HCl and salbutamol sulphate in their pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 2001, 26, 379-386.	2.8	32
58	Reproterol plastic membrane ion-selective electrodes based on its individual and mixed ion-exchangers with phosphotungstic and/or phosphomolybdic acids. Microchemical Journal, 2001, 69, 189-197.	4.5	6
59	Construction and performance characteristics of terbutaline plastic membrane electrode in batch and FIA conditions. Microchemical Journal, 2001, 70, 93-101.	4. 5	20
60	Salbutamol plastic membrane electrodes based on individual and mixed ion-exchangers of salbutamolium phosphotungstate and phosphomolybdate. Analyst, The, 2000, 125, 1129-1133.	3.5	32
61	Dipyridamole plastic membrane electrodes based on individual and mixed ion-exchangers of dipyridamolium phosphotungstate and tetraphenylborate. Electroanalysis, 1997, 9, 74-78.	2.9	6
62	Etilefrine Plastic Membrane Electrodes Based on Individual and Mixed Ion-exchangers of Etilefrinium Phosphotungstate and Tetraphenylborate Analytical Letters, 1996, 29, 1463-1475.	1.8	15
63	Nanomicelles-in-coaxial nanofibers with exit channels as a transdermal delivery platform for smoking cessation. Journal of Materials Chemistry B, O, , .	5.8	3