Egbert Zojer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5507334/publications.pdf

Version: 2024-02-01

228 papers 10,134 citations

53 h-index 92 g-index

235 all docs

235 docs citations

times ranked

235

9525 citing authors

#	Article	IF	CITATIONS
1	Discovering structure–property relationships for the phonon band structures of hydrocarbon-based organic semiconductor crystals: the instructive case of acenes. Journal of Materials Chemistry C, 2022, 10, 2532-2543.	2.7	6
2	Understanding the Origin of the Particularly Small and Anisotropic Thermal Expansion of MOFâ€₹4. Advanced Theory and Simulations, 2022, 5, .	1.3	5
3	Biasâ€Triggered Conductivity Switching and High Effective Rectification in Metalloceneâ€Based Molecular Junctions. Advanced Electronic Materials, 2022, 8, .	2.6	8
4	Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering. Accounts of Chemical Research, 2022, 55, 1857-1867.	7.6	15
5	Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks. Nanomaterials, 2022, 12, 2142.	1.9	5
6	Identifying the Bottleneck for Heat Transport in Metal–Organic Frameworks. Advanced Theory and Simulations, 2021, 4, 2000211.	1.3	14
7	Understanding the origin of serrated stacking motifs in planar two-dimensional covalent organic frameworks. Nanoscale, 2021, 13, 9339-9353.	2.8	9
8	First-principles calculations of hybrid inorganic–organic interfaces: from state-of-the-art to best practice. Physical Chemistry Chemical Physics, 2021, 23, 8132-8180.	1.3	36
9	Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry, 2021, 13, 465-471.	6.6	41
10	Porous Honeycomb Self-Assembled Monolayers: Tripodal Adsorption and Hidden Chirality of Carboxylate Anchored Triptycenes on Ag. ACS Nano, 2021, 15, 11168-11179.	7.3	25
11	Maximizing the Carrier Mobilities of Metal–Organic Frameworks Comprising Stacked Pentacene Units. Journal of Physical Chemistry Letters, 2021, 12, 7002-7009.	2.1	6
12	Avoiding the Centerâ€Symmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Films. Advanced Materials, 2021, 33, e2103287.	11.1	14
13	Semiâ€Automatic Deposition of Oriented Cu(OH) ₂ Nanobelts for the Heteroepitaxial Growth of Metal–Organic Framework Films. Advanced Materials Interfaces, 2021, 8, 2101039.	1.9	8
14	Understanding the Anisotropic Elastic Properties of Metal–Organic Frameworks at the Nanoscale: The Instructive Example of MOF-74. Journal of Physical Chemistry C, 2021, 125, 24728-24745.	1.5	5
15	Self-Assembled Monolayers with Distributed Dipole Moments Originating from Bipyrimidine Units. Journal of Physical Chemistry C, 2020, 124, 504-519.	1.5	15
16	Exciton Coupling and Conformational Changes Impacting the Excited State Properties of Metal Organic Frameworks. Molecules, 2020, 25, 4230.	1.7	9
17	Final-State Simulations of Core-Level Binding Energies at Metal-Organic Hybrid Interfaces: Artifacts Caused by Spurious Collective Electrostatic Effects. ACS Omega, 2020, 5, 25868-25881.	1.6	6
18	The Potential of X-ray Photoelectron Spectroscopy for Determining Interface Dipoles of Self-Assembled Monolayers. Applied Sciences (Switzerland), 2020, 10, 5735.	1.3	3

#	Article	IF	Citations
19	Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications. Nanomaterials, 2020, 10, 2372.	1.9	4
20	Electrostatic Design of Polar Metal–Organic Framework Thin Films. Nanomaterials, 2020, 10, 2420.	1.9	4
21	2D Semiconductors: Interfacial Band Engineering of MoS ₂ /Gold Interfaces Using Pyrimidineâ€Containing Selfâ€Assembled Monolayers: Toward Contactâ€Resistanceâ€Free Bottomâ€Contacts (Adv. Electron. Mater. 5/2020). Advanced Electronic Materials, 2020, 6, 2070026.	2.6	1
22	Interfacial Band Engineering of MoS ₂ /Gold Interfaces Using Pyrimidineâ€Containing Selfâ€Assembled Monolayers: Toward Contactâ€Resistanceâ€Free Bottomâ€Contacts. Advanced Electronic Materials, 2020, 6, 2000110.	2.6	18
23	Evaluating Computational Shortcuts in Supercell-Based Phonon Calculations of Molecular Crystals: The Instructive Case of Naphthalene. Journal of Chemical Theory and Computation, 2020, 16, 2716-2735.	2.3	21
24	(Invited) Understanding Phonons and Thermal Transport in Metal-Organic Frameworks. ECS Meeting Abstracts, 2020, MA2020-02, 2019-2019.	0.0	0
25	Understanding the Correlation between Electronic Coupling and Energetic Stability of Molecular Crystal Polymorphs: The Instructive Case of Quinacridone. Chemistry of Materials, 2019, 31, 7054-7069.	3.2	9
26	The Impact of Dipolar Layers on the Electronic Properties of Organic/Inorganic Hybrid Interfaces. Advanced Materials Interfaces, 2019, 6, 1900581.	1.9	112
27	Energy-level alignment at strongly coupled organic–metal interfaces. Journal of Physics Condensed Matter, 2019, 31, 194002.	0.7	12
28	Analyzing the Electronic Coupling in Molecular Crystalsâ€"The Instructive Case of αâ€Quinacridone. Advanced Theory and Simulations, 2019, 2, 1800204.	1.3	10
29	Triptycene Tripods for the Formation of Highly Uniform and Densely Packed Self-Assembled Monolayers with Controlled Molecular Orientation. Journal of the American Chemical Society, 2019, 141, 5995-6005.	6.6	48
30	A dithiocarbamate anchoring group as a flexible platform for interface engineering. Physical Chemistry Chemical Physics, 2019, 21, 22511-22525.	1.3	14
31	Magnetic configurations of open-shell molecules on metals: The case of CuPc and CoPc on silver. Physical Review Materials, 2019, 3, .	0.9	4
32	Understanding phonon properties in isoreticular metal-organic frameworks from first principles. Physical Review Materials, 2019, 3, .	0.9	16
33	Modelling Organic-Inorganic Hybrid Interfaces. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 3-40.	0.1	1
34	Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design. 2D Materials, 2018, 5, 035019.	2.0	18
35	Understanding the Properties of Tailor-Made Self-Assembled Monolayers with Embedded Dipole Moments for Interface Engineering. Journal of Physical Chemistry C, 2018, 122, 28757-28774.	1.5	38
36	Embedded Dipole Selfâ€Assembled Monolayers for Contact Resistance Tuning in pâ€Type and nâ€Type Organic Thin Film Transistors and Flexible Electronic Circuits. Advanced Functional Materials, 2018, 28, 1804462.	7.8	66

3

#	Article	lF	Citations
37	Tunneling Probability Increases with Distance in Junctions Comprising Self-Assembled Monolayers of Oligothiophenes. Journal of the American Chemical Society, 2018, 140, 15048-15055.	6.6	24
38	van der Waals Interaction Activated Strong Electronic Coupling at the Interface between Chloro Boron-Subphthalocyanine and Cu(111). Journal of Physical Chemistry C, 2018, 122, 14621-14630.	1.5	6
39	Distinguishing between Charge-Transfer Mechanisms at Organic/Inorganic Interfaces Employing Hybrid Functionals. Journal of Physical Chemistry C, 2018, 122, 14640-14653.	1.5	12
40	Structural, Spectroscopic, and Computational Characterization of the Concomitant Polymorphs of the Natural Semiconductor Indigo. Journal of Physical Chemistry C, 2018, 122, 18422-18431.	1.5	22
41	Toward a Reliable Description of the Lattice Vibrations in Organic Molecular Crystals: The Impact of van der Waals Interactions. Journal of Chemical Theory and Computation, 2018, 14, 4380-4390.	2.3	26
42	Electrostatic Design of 3D Covalent Organic Networks. Advanced Materials, 2017, 29, 1700888.	11.1	8
43	Orientation-Dependent Work-Function Modification Using Substituted Pyrene-Based Acceptors. Journal of Physical Chemistry C, 2017, 121, 24657-24668.	1.5	39
44	Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters. Nano Letters, 2017, 17, 7350-7357.	4.5	14
45	Fully Atomistic Understanding of the Electronic and Optical Properties of a Prototypical Doped Charge-Transfer Interface. ACS Nano, 2017, 11, 10495-10508.	7.3	20
46	DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting. Journal of Physical Chemistry Letters, 2017, 8, 3690-3695.	2.1	42
47	Relative Thermal Stability of Thiolate- and Selenolate-Bonded Aromatic Monolayers on the Au(111) Substrate. Journal of Physical Chemistry C, 2017, 121, 28031-28042.	1.5	33
48	Exploring the driving forces behind the structural assembly of biphenylthiolates on Au(111). Journal of Chemical Physics, 2017, 147, 024706.	1.2	8
49	Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers. Journal of Physical Chemistry C, 2017, 121, 15815-15830.	1.5	45
50	Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers. Journal of Physical Chemistry Letters, 2016, 7, 2994-3000.	2.1	28
51	Dipole-induced asymmetric conduction in tunneling junctions comprising self-assembled monolayers. RSC Advances, 2016, 6, 69479-69483.	1.7	31
52	Electronic Properties of 1,2;8,9-Dibenzopentacene in Solutions, Solid Matrices, and Thin Films. Journal of Applied Spectroscopy, 2016, 83, 20-26.	0.3	3
53	Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers. Journal of Physical Chemistry C, 2016, 120, 3428-3437.	1.5	125
54	Adsorption Behavior of Nonplanar Phthalocyanines: Competition of Different Adsorption Conformations. Journal of Physical Chemistry C, 2016, 120, 6869-6875.	1.5	10

#	Article	lF	CITATIONS
55	Sticking with the Pointy End? Molecular Configuration of Chloro Boron-Subphthalocyanine on Cu(111). Journal of Physical Chemistry C, 2016, 120, 7113-7121.	1.5	11
56	Transition voltages respond to synthetic reorientation of embedded dipoles in self-assembled monolayers. Chemical Science, 2016, 7, 781-787.	3.7	46
57	Complex Stoichiometry-Dependent Reordering of 3,4,9,10-Perylenetetracarboxylic Dianhydride on Ag(111) upon K Intercalation. ACS Nano, 2016, 10, 2365-2374.	7.3	22
58	Impact of the Capacitance of the Dielectric on the Contact Resistance of Organic Thin-Film Transistors. Physical Review Applied, 2015, 4, .	1.5	31
59	The Effects of Embedded Dipoles in Aromatic Selfâ€Assembled Monolayers. Advanced Functional Materials, 2015, 25, 3943-3957.	7.8	90
60	Tuning the Electronic Structure of Graphene through Collective Electrostatic Effects. Advanced Materials Interfaces, 2015, 2, 1500323.	1.9	8
61	Postadsorption Work Function Tuning via Hydrogen Pressure Control. Journal of Physical Chemistry C, 2015, 119, 27162-27172.	1.5	12
62	Computational Modelling of Organic Semiconductors: From the Quantum World to Actual Devices. Advanced Functional Materials, 2015, 25, 1913-1914.	7.8	0
63	A Toolbox for Controlling the Energetics and Localization of Electronic States in Selfâ€Assembled Organic Monolayers. Advanced Science, 2015, 2, 1400016.	5.6	20
64	Electronic Properties of Biphenylthiolates on $Au(111)$: The Impact of Coverage Revisited. Journal of Physical Chemistry C, 2015, 119, 7817-7825.	1.5	20
65	Impact of Anchoring Groups on Ballistic Transport: Single Molecule vs Monolayer Junctions. Journal of Physical Chemistry C, 2015, 119, 21198-21208.	1.5	40
66	Outer-valence Electron Spectra of Prototypical Aromatic Heterocycles from an Optimally Tuned Range-Separated Hybrid Functional. Journal of Chemical Theory and Computation, 2014, 10, 1934-1952.	2.3	128
67	Impact of Collective Electrostatic Effects on Charge Transport through Molecular Monolayers. Journal of Physical Chemistry C, 2014, 118, 22395-22401.	1.5	22
68	Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy. Molecules, 2014, 19, 2969-2992.	1.7	69
69	Anticorrelation between the Evolution of Molecular Dipole Moments and Induced Work Function Modifications. Journal of Physical Chemistry Letters, 2013, 4, 3521-3526.	2.1	25
70	X-ray based tools for the investigation of buried interfaces in organic electronic devices. Organic Electronics, 2013, 14, 479-487.	1.4	16
71	Impact of Materials versus Geometric Parameters on the Contact Resistance in Organic Thinâ€Film Transistors. Advanced Functional Materials, 2013, 23, 2941-2952.	7.8	45
72	Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures. Journal of Physical Chemistry C, 2013, 117, 3055-3061.	1.5	36

#	Article	IF	Citations
73	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. Journal of Materials Chemistry, 2012, 22, 4371.	6.7	17
74	Radical self-assembled monolayers on $Au(111)$ formed by the adsorption of closed-shell molecules. Journal of Materials Chemistry, 2012, 22, 4269.	6.7	13
75	Dimensionality effects in the electronic structure of organic semiconductors consisting of polar repeat units. Organic Electronics, 2012, 13, 3165-3176.	1.4	19
76	Density-Functional Theory with Screened vanÂderÂWaals Interactions for the Modeling of Hybrid Inorganic-Organic Systems. Physical Review Letters, 2012, 108, 146103.	2.9	503
77	Mechanism of surface proton transfer doping in pentacene based organic thinâ€ilm transistors. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 181-192.	0.8	14
78	Polarity Switching of Charge Transport and Thermoelectricity in Selfâ€Assembled Monolayer Devices. Advanced Materials, 2012, 24, 4403-4407.	11.1	22
79	Patterned Immobilization of a Luminescent Ru(II) Complex in Polymer Films Using the Photoreaction of Benzyl thiocyanate: Toward Color Emission Tuning of Electroluminescent Devices. Macromolecular Chemistry and Physics, 2012, 213, 367-373.	1.1	3
80	Electronic structure of pyridine-based SAMs on flat Au(111) surfaces: extended charge rearrangements and Fermi level pinning. Physical Chemistry Chemical Physics, 2011, 13, 9747.	1.3	26
81	Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units. Journal of the American Chemical Society, 2011, 133, 18634-18645.	6.6	33
82	Orientational Ordering of Nonplanar Phthalocyanines on Cu(111): Strength and Orientation of the Electric Dipole Moment. Physical Review Letters, 2011, 106, 156102.	2.9	48
83	Efficient Blueâ€Lightâ€Emitting Polymer Heterostructure Devices: The Fabrication of Multilayer Structures from Orthogonal Solvents. Advanced Materials, 2010, 22, 2087-2091.	11.1	92
84	Modeling the Electronic Properties of Ï€â€Conjugated Selfâ€Assembled Monolayers. Advanced Materials, 2010, 22, 2494-2513.	11.1	126
85	Tuning the Threshold Voltage in Organic Thinâ€Film Transistors by Local Channel Doping Using Photoreactive Interfacial Layers. Advanced Materials, 2010, 22, 5361-5365.	11.1	44
86	A novel concept for humidity compensated sub-ppm ammonia detection. Sensors and Actuators B: Chemical, 2010, 145, 181-184.	4.0	21
87	Photochemical control of the carrier mobility in pentacene-based organic thin-film transistors. Applied Physics Letters, 2010, 96, 213303.	1.5	17
88	Density-Dependent Reorientation and Rehybridization of Chemisorbed Conjugated Molecules for Controlling Interface Electronic Structure. Physical Review Letters, 2010, 104, 246805.	2.9	55
89	Work-Function Modification beyond Pinning: When Do Molecular Dipoles Count?. Nano Letters, 2010, 10, 4369-4374.	4.5	70
90	The Electronic Structure of Mixed Self-Assembled Monolayers. ACS Nano, 2010, 4, 6735-6746.	7.3	43

#	Article	IF	Citations
91	Simultaneously Understanding the Geometric and Electronic Structure of Anthraceneselenolate on Au(111): A Combined Theoretical and Experimental Study. Journal of Physical Chemistry C, 2010, 114, 2677-2684.	1.5	34
92	Analysis of Bonding between Conjugated Organic Molecules and Noble Metal Surfaces Using Orbital Overlap Populations. Journal of Chemical Theory and Computation, 2010, 6, 3481-3489.	2.3	12
93	A particularly strong organic acceptor for tuning the hole-injection barriers in modern organic devices. Synthetic Metals, 2010, 160, 1456-1462.	2.1	8
94	Self-assembled monolayers of polar molecules on Au(111) surfaces: distributing the dipoles. Physical Chemistry Chemical Physics, 2010, 12, 4291.	1.3	28
95	Is there a Au–S bond dipole in self-assembled monolayers on gold?. Physical Chemistry Chemical Physics, 2010, 12, 4287.	1.3	37
96	Van der Waals Interactions Between Organic Adsorbates and at Organic/Inorganic Interfaces. MRS Bulletin, 2010, 35, 435-442.	1.7	257
97	F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Physical Review B, 2009, 79, .	1.1	116
98	Threshold Voltage Shifts in Organic Thinâ€Film Transistors Due to Selfâ€Assembled Monolayers at the Dielectric Surface. Advanced Functional Materials, 2009, 19, 958-967.	7.8	101
99	Electronic Structure of Selfâ€Assembled Monolayers on Au(111) Surfaces: The Impact of Backbone Polarizability. Advanced Functional Materials, 2009, 19, 3766-3775.	7.8	37
100	A High Molecular Weight Donor for Electron Injection Interlayers on Metal Electrodes. ChemPhysChem, 2009, 10, 2947-2954.	1.0	16
101	Continuous tuning of the threshold voltage of organic thin-film transistors by a chemically reactive interfacial layer. Applied Physics A: Materials Science and Processing, 2009, 95, 43-48.	1.1	14
102	Understanding the Electronic Structure of Metal/SAM/Organicâ^'Semiconductor Heterojunctions. ACS Nano, 2009, 3, 3513-3520.	7.3	48
103	Theoretical study of PTCDA adsorbed on the coinage metal surfaces, $Ag(111)$, $Au(111)$ and $Cu(111)$. New Journal of Physics, 2009, 11, 053010.	1.2	182
104	Doping Molecular Wires. Nano Letters, 2009, 9, 2559-2564.	4.5	32
105	Interface Modification of Pentacene OFET Gate Dielectrics. Springer Proceedings in Physics, 2009, , 185-187.	0.1	3
106	Synthesis and Photophysical Properties of 3,6-Diphenyl-9-hexyl-9H-carbazole Derivatives Bearing Electron Withdrawing Groups. Monatshefte Fýr Chemie, 2008, 139, 223-231.	0.9	13
107	Understanding the properties of interfaces between organic selfâ€assembled monolayers and noble metals—a theoretical perspective. Surface and Interface Analysis, 2008, 40, 371-378.	0.8	41
108	The Effect of Protonation on the Optical Properties of Conjugated Fluorene–Pyridine Copolymers. Macromolecular Chemistry and Physics, 2008, 209, 2122-2134.	1.1	20

#	Article	IF	Citations
109	Order of Magnitude Effects of Thiazole Regioisomerism on the Nearâ€IR Twoâ€Photon Crossâ€Sections of Dipolar Chromophores. Advanced Functional Materials, 2008, 18, 794-801.	7.8	8
110	The Influence of UV Irradiation on Ketonic Defect Emission in Fluoreneâ€Based Copolymers. Advanced Functional Materials, 2008, 18, 2480-2488.	7.8	14
111	The Dielectric Constant of Selfâ€Assembled Monolayers. Advanced Functional Materials, 2008, 18, 3999-4006.	7.8	101
112	Chemical Control of Local Doping in Organic Thinâ€Film Transistors: From Depletion to Enhancement. Advanced Materials, 2008, 20, 3143-3148.	11.1	62
113	The Interface Energetics of Self-Assembled Monolayers on Metals. Accounts of Chemical Research, 2008, 41, 721-729.	7.6	371
114	First-principles study of the geometric and electronic structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Au</mml:mi><mml:mn>13</mml:mn></mml:msub></mml:math> clusters: Importance of the prism motif. Physical Review B, 2008, 77, .	1.1	43
115	Synthesis of a Photosensitive Thiocyanate-Functionalized Trialkoxysilane and Its Application in Patterned Surface Modifications. Chemistry of Materials, 2008, 20, 2009-2015.	3.2	15
116	Defect chemistry of polyfluorenes: identification of the origin of "interface defects―in polyfluorene based light-emitting devices. Chemical Communications, 2008, , 5170.	2.2	29
117	Oddâ^Even Effects in Self-Assembled Monolayers of ω-(Biphenyl-4-yl)alkanethiols:  A First-Principles Study. Langmuir, 2008, 24, 474-482.	1.6	75
118	"Soft―Metallic Contact to Isolated C ₆₀ Molecules. Nano Letters, 2008, 8, 3825-3829.	4.5	50
119	Reducing the Metal Work Function beyond Pauli Pushback: A Computational Investigation of Tetrathiafulvalene and Viologen on Coinage Metal Surfaces. Journal of Physical Chemistry C, 2008, 112, 20357-20365.	1.5	43
120	A theoretical view on self-assembled monolayers in organic electronic devices. Proceedings of SPIE, 2008, , .	0.8	10
121	Gold work function reduction by 2.2eV with an air-stable molecular donor layer. Applied Physics Letters, 2008, 93, .	1.5	7 5
122	Electronic structure of thiol-bonded self-assembled monolayers: Impact of coverage. Physical Review B, 2008, 77, .	1.1	80
123	Comment on "Electron Core-Hole Interaction and Its Induced Ionic Structural Relaxation in Molecular Systems under X-Ray Irradiation― Physical Review Letters, 2007, 99, 059601; discussion 059602.	2.9	4
124	Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface. Physical Review Letters, 2007, 99, 256801.	2.9	206
125	Efficient acceptor groups for NLO chromophores: competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran. Journal of Materials Chemistry, 2007, 17, 2944-2949.	6.7	37
126	High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. Chemical Communications, 2007, , 1372-1374.	2.2	52

#	Article	IF	CITATIONS
127	Improving the Stability of Polymer FETs by Introducing Fixed Acceptor Units into the Main Chain:Â Application to Poly(alkylthiophenes). Chemistry of Materials, 2007, 19, 1472-1481.	3.2	21
128	Structure to Property Relationships for Multiphoton Absorption in Covalently Linked Porphyrin Dimers:  A Correction Vector INDO/MRDCI Study. Journal of Physical Chemistry A, 2007, 111, 8509-8518.	1.1	20
129	Characterizing Chemically Reactive Thin Layers:  Surface Reaction of [2-[4-(Chlorosulfonyl)phenyl]ethyl]trichlorosilane with Ammonia. Journal of Physical Chemistry C, 2007, 111, 12407-12413.	1.5	10
130	Toward Control of the Metalâ^'Organic Interfacial Electronic Structure in Molecular Electronics: A First-Principles Study on Self-Assembled Monolayers of Ï€-Conjugated Molecules on Noble Metals. Nano Letters, 2007, 7, 932-940.	4. 5	257
131	Ordersâ€ofâ€Magnitude Reduction of the Contact Resistance in Shortâ€Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Auâ€Electrodes. Advanced Functional Materials, 2007, 17, 2687-2692.	7.8	117
132	Main-Chain Liquid Crystalline Polymers Based on Bis-Etherified 9,9-Dihexyl-2,7-bis(4′-hydroxy-1,1′-biphen-4-yl)fluorenes. Macromolecular Chemistry and Physics, 2007, 208, 1458-1468.	1,1	12
133	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. Chemistry of Materials, 2007, 19, 432-442.	3.2	66
134	Synthesis and Photo Physical Properties of 9,10-Bis(hydroxyphenyl)anthracene Derivatives. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2007, 138, 453-464.	0.9	9
135	Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions: π-Conjugated Thiols on Gold. Physical Review Letters, 2006, 96, 196806.	2.9	258
136	Pyrroline Chromophores for Electro-Optics. Chemistry of Materials, 2006, 18, 2982-2988.	3.2	114
137	Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. Journal of the American Chemical Society, 2006, 128, 14444-14445.	6.6	205
138	Molecular fluorescent pH-probes based on 8-hydroxyquinoline. Organic and Biomolecular Chemistry, 2006, 4, 1503.	1.5	22
139	Organoboron Quinolinolates with Extended Conjugated Chromophores:  Synthesis, Structure, and Electronic and Electroluminescent Properties. Chemistry of Materials, 2006, 18, 3539-3547.	3.2	72
140	UVâ^ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics. Journal of Applied Physics, 2006, 100, 053701.	1.1	99
141	Stretching and Breaking of a Molecular Junction. Small, 2006, 2, 1468-1475.	5. 2	44
142	Organic/metal interfaces in self-assembled monolayers of conjugated thiols: A first-principles benchmark study. Surface Science, 2006, 600, 4548-4562.	0.8	128
143	Molecular Origin of the Temperature-Dependent Energy Migration in a Rigid-Rod Ladder-Phenylene Molecular Host. Advanced Materials, 2006, 18, 310-314.	11.1	23
144	Quantum-chemical investigation of second-order nonlinear optical chromophores: Comparison of strong nitrile-based acceptor end groups and role of auxiliary donors and acceptors. Journal of Chemical Physics, 2006, 124, 044510.	1.2	36

#	Article	IF	Citations
145	Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores. Journal of Chemical Physics, 2006, 125, 044101.	1.2	19
146	Bis-aryl substituted dioxaborines as electron-transport materials: a comparative density functional theory investigation with oxadiazoles and siloles. Chemical Physics, 2005, 313, 151-157.	0.9	41
147	Influence of molecular conformation on organic/metal interface energetics. Chemical Physics Letters, 2005, 413, 390-395.	1.2	72
148	Tuning the Electroluminescence Color in Polymer Light-Emitting Devices Using the Thiol-Ene Photoreaction. Advanced Functional Materials, 2005, 15, 403-409.	7.8	42
149	Limitations of the F \tilde{A} ¶rster Description of Singlet Exciton Migration: The Illustrative Example of Energy Transfer to Ketonic Defects in Ladder-type Poly(para-phenylenes). Advanced Functional Materials, 2005, 15, 155-160.	7.8	63
150	Effective conjugation and Raman intensities in oligo(para-phenylene)s: A microscopic view from first-principles calculations. Journal of Chemical Physics, 2005, 122, 114511.	1.2	33
151	Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(para-phenylene)s. Journal of Chemical Physics, 2005, 122, 054501.	1.2	117
152	Colorless Molecular Dopants for Low-Operating-Voltage Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2005, 428, 17-32.	0.4	1
153	Two-Photon Absorption at Telecommunications Wavelengths in a Dipolar Chromophore with a Pyrrole Auxiliary Donor and Thiazole Auxiliary Acceptor. Journal of the American Chemical Society, 2005, 127, 7282-7283.	6.6	150
154	Aromatic Amines:  A Comparison of Electron-Donor Strengths. Journal of Physical Chemistry A, 2005, 109, 9346-9352.	1.1	134
155	Polymers and Organic Materials, Electronic States of. , 2005, , 375-386.		0
156	Three-photon absorption in anthracene-porphyrin-anthracene triads: A quantum-chemical study. Journal of Chemical Physics, 2004, 121, 11060.	1.2	15
157	Exciton-Phonon Coupling in Conjugated Organic Molecules. Physica Scripta, 2004, T109, 156.	1.2	O
158	Adsorption, initial growth and desorption kinetics of p-quaterphenyl on polycrystalline gold surfaces. Applied Surface Science, 2004, 221, 184-196.	3.1	33
159	Suppression of the Keto-Emission in Polyfluorene Light-Emitting Diodes: Experiments and Models. Advanced Functional Materials, 2004, 14, 1097-1104.	7.8	47
160	Continuously Color-Tunable Rubber Laser. Advanced Materials, 2004, 16, 130-133.	11.1	68
161	Two-Photon Absorption in Linear Bis-dioxaborine Compounds—The Impact of Correlation-Induced Oscillator-Strength Redistribution. ChemPhysChem, 2004, 5, 982-988.	1.0	25
162	Two-Photon Absorption in Quadrupolarĩ€-Conjugated Molecules: Influence of the Nature of the Conjugated Bridge and the Donor–Acceptor Separation. Chemistry - A European Journal, 2004, 10, 2668-2680.	1.7	72

#	Article	IF	Citations
163	Cross-section analysis of organic light-emitting diodes. Ultramicroscopy, 2004, 101, 123-128.	0.8	15
164	Excited-state localization effects in alternating meta- and para-linked poly(phenylene-vinylene)s. Chemical Physics, 2004, 297, 143-151.	0.9	17
165	Ketonic Defects in Ladder-type Poly(p-phenylene)s. Chemistry of Materials, 2004, 16, 4667-4674.	3.2	53
166	Metal-Ion Sensing Fluorophores with Large Two-Photon Absorption Cross Sections:Â Aza-Crown Ether Substituted Donorâ^'Acceptorâ^'Donor Distyrylbenzenes. Journal of the American Chemical Society, 2004, 126, 9291-9306.	6.6	206
167	Resonant enhancement of two-photon absorption in substituted fluorene molecules. Journal of Chemical Physics, 2004, 121, 3152-3160.	1.2	114
168	Limitations of Essential-State Models for the Description of Two-Photon Absorption Processes: The Example of Bis(dioxaborine)-Substituted Chromophoresâ€. Journal of Physical Chemistry B, 2004, 108, 8641-8646.	1.2	31
169	The Origin of Green Emission in Polyfluorene-Based Conjugated Polymers: On-Chain Defect Fluorescence. Advanced Functional Materials, 2003, 13, 597-601.	7.8	255
170	Twisted ¨i€-system electro-optic chromophores. A CIS vs. MRD-CI theoretical investigation. Computational and Theoretical Chemistry, 2003, 633, 227-235.	1.5	48
171	Raman intensities in polyphenyls: An ab-initio study. Synthetic Metals, 2003, 135-136, 359-360.	2.1	1
172	Tuning the emission color of conjugated organic materials by photochemical reactions. Synthetic Metals, 2003, 137, 1027-1028.	2.1	2
173	Reductive photo-patterning of conjugated thin films. Synthetic Metals, 2003, 138, 85-87.	2.1	5
174	Albrecht theory and anharmonic coupling in polyphenyl Raman spectra. Synthetic Metals, 2003, 139, 823-825.	2.1	9
175	Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. Chemical Communications, 2003, , 1490-1491.	2.2	90
176	On the polarization of the green emission of polyfluorenes. Journal of Chemical Physics, 2003, 119, 6832-6839.	1.2	26
177	TEM Investigations of Cross-Sectional Prepared Organic Light Emitting Devices. Microscopy and Microanalysis, 2003, 9, 266-267.	0.2	2
178	Photochemical Patterning Approaches for Multicolor Polymer Light Emitting Devices. Materials Research Society Symposia Proceedings, 2003, 771, 991.	0.1	2
179	Quantitative prediction of optical excitations in conjugated organic oligomers: A density functional theory study. Journal of Chemical Physics, 2002, 117, 5921-5928.	1.2	76
180	Green emission from poly(fluorene)s: The role of oxidation. Journal of Chemical Physics, 2002, 117, 6794-6802.	1.2	190

#	Article	IF	CITATIONS
181	Ultrafast photoexcitation dynamics in a ladder-type oligophenyl. Physical Review B, 2002, 66, .	1.1	13
182	Polymer-based red, green, and blue emitting devices fabricated by reductive photopatterning. Applied Physics Letters, 2002, 81, 4269-4271.	1.5	16
183	Synthesis and Characterization of Novel para- and meta-Phenylenevinylene Derivatives:  Fine Tuning of the Electronic and Optical Properties of Conjugated Materials. Journal of Physical Chemistry B, 2002, 106, 6442-6450.	1.2	51
184	Tuning the two-photon absorption response of quadrupolar organic molecules. Journal of Chemical Physics, 2002, 116, 3646-3658.	1.2	119
185	Ab initio study of vibrational anharmonic coupling effects in oligo(para-phenylenes). Journal of Chemical Physics, 2002, 116, 10921-10931.	1.2	32
186	Influence of the degree of conjugation on excited state lifetimes in phenylene-based materials. Synthetic Metals, 2002, 127, 241-245.	2.1	12
187	Multicolor Organic Electroluminescent Devices Fabricated by a Reductive Photo-patterning Method. Advanced Materials, 2002, 14, 1722-1725.	11.1	29
188	Title is missing!. Advanced Functional Materials, 2002, 12, 631-641.	7.8	366
189	Role of Dimensionality on the Two-Photon Absorption Response of Conjugated Molecules: The Case of Octupolar Compounds., 2002, 12, 631.		2
190	Pressure studies on the intermolecular interactions in biphenyl. Synthetic Metals, 2001, 116, 327-331.	2.1	53
191	High pressure Raman studies on the structural conformation of oligophenyls. Synthetic Metals, 2001, 116, 163-166.	2.1	13
192	Synthesis and characterization of novel oligo(phenylenevinylene) derivatives. Synthetic Metals, 2001, 119, 183-184.	2.1	8
193	Doping effects on the electronic and structural properties of poly(para-phenylene) investigated from first-principles. Synthetic Metals, 2001, 119, 211-212.	2.1	2
194	The size of electron-hole pairs in π-conjugated oligomers. Synthetic Metals, 2001, 119, 499-502.	2.1	8
195	Structural Properties of Conjugated Molecular Crystals Under high Pressure. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	1
196	High Pressure Studies of Polyaromatic Molecilar Crystals: Optical and Electronic Properties from first Principles. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	7
197	Reductive Photopatterning of Phenylene-Vinylene-Based Polymers. Materials Research Society Symposia Proceedings, 2001, 707, 1131.	0.1	0
198	Reductive photopatterning of phenylene-vinylene-based polymers. Materials Research Society Symposia Proceedings, 2001, 708, 1131/AA11.3.1.	0.1	0

#	Article	IF	Citations
199	Ab Initio Study of Vibrational Anharmonic Coupling Effects in Oligo(para-phenylenes). Materials Research Society Symposia Proceedings, 2001, 708, 3101.	0.1	0
200	Combined photoelectron and metastable atom electron spectroscopy study of n-doped oligophenylene thin films. Applied Surface Science, 2001, 175-176, 764-768.	3.1	13
201	Electronic Properties of the Interfaces Between the Wide Bandgap Organic SemiconductorPara-Sexiphenyl and Samarium. Advanced Functional Materials, 2001, 11, 51-58.	7.8	39
202	Electronic Properties of the Interfaces Between the Wide Bandgap Organic Semiconductor Para-Sexiphenyl and Samarium. Advanced Functional Materials, 2001, 11, 51-58.	7.8	3
203	Universal exciton size scaling in π conjugated systems. Chemical Physics Letters, 2000, 318, 585-589.	1.2	67
204	The quasi-band-structure description of conjugated oligomers. Journal of Physics Condensed Matter, 2000, 12, 1753-1768.	0.7	7
205	Localized triplet excitations and the effect of photo-oxidation in ladder-type poly(p-phenylene) and oligo(p-phenylene). Physical Review B, 2000, 61, 10807-10814.	1.1	54
206	Structure, morphology, and optical properties of highly ordered films ofpara-sexiphenyl. Physical Review B, 2000, 61, 16538-16549.	1.1	77
207	Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers. Physical Review B, 2000, 61, 16561-16569.	1.1	3
208	Dynamic structure factor and excitons in TPD. Physical Review B, 2000, 61, 1662-1665.	1.1	15
209	The H2-phase of the lyotropic liquid crystal sodium 3,4,5-tris(omega-acryloyloxyundecyloxy)benzoate. Liquid Crystals, 2000, 27, 407-411.	0.9	9
210	Solid state effects in the electronic structure of ladder-type poly(p-phenylene)s and oligo(p-phenylene)s. Synthetic Metals, 2000, 111-112, 509-513.	2.1	6
211	The influence of the counterion on the electronic structure in doped phenylene-based materials. Surface Science, 2000, 454-456, 1000-1004.	0.8	19
212	Excited state localization in organic molecules consisting of conjugated and nonconjugated segments. Journal of Chemical Physics, 2000, 113, 10002-10012.	1.2	54
213	From molecular states to band structure: Theoretical investigation of momentum dependent excitations in phenylene based organic materials. Journal of Chemical Physics, 1999, 111, 1668-1675.	1.2	14
214	Theoretical investigation of the geometric and optical properties of neutral and charged oligophenylenes. Physical Review B, 1999, 59, 7957-7968.	1.1	82
215	Theoretical investigation of phenylene-based materials in their pristine and doped state. Optical Materials, 1999, 12, 307-310.	1.7	3
216	Theoretical characterization of phenylene-based oligomers, polymers, and dendrimers. Synthetic Metals, 1999, 100, 141-162.	2.1	42

#	Article	IF	CITATIONS
217	Application of new PPV precursor polymers in organic LEDs. Synthetic Metals, 1999, 102, 997.	2.1	2
218	Momentum dependent excitation processes in organic materials. Synthetic Metals, 1999, 101, 337-338.	2.1	2
219	Geometry-dependent absorption, and emission of para-hexaphenyl. Synthetic Metals, 1999, 101, 662-663.	2.1	10
220	Device characteristics of nanostructured Poly(p-phenylenevinylene). Synthetic Metals, 1999, 102, 1155-1156.	2.1	5
221	Photophysical properties of nanostructured PPV-composites. Synthetic Metals, 1999, 102, 1270-1271.	2.1	4
222	Fluorescent Hexacatenar Liquid Crystals. Materials Research Society Symposia Proceedings, 1999, 560, 277.	0.1	2
223	A New Alternative for the Low-Workfunction Electrode in Organic Devices. Materials Research Society Symposia Proceedings, 1999, 598, 23.	0.1	1
224	Side Chain Influence on Main Chain Orientation of PPV-Type Oligomers. Materials Research Society Symposia Proceedings, 1999, 598, 173.	0.1	0
225	Influence of the Chemical Structure on the Luminescence Properties of Organic Dye Molecules. Materials Research Society Symposia Proceedings, 1999, 598, 339.	0.1	1
226	Localized and delocalized singlet excitons in ladder-type poly(paraphenylene). Physical Review B, 1998, 57, R4202-R4205.	1.1	24
227	Momentum-dependent excitations in highly ordered films ofpara-hexaphenyl. Physical Review B, 1997, 56, 10138-10144.	1.1	29
228	Synthesis and characterization of a novel side-chain liquid crystalline poly(p-phenylenevinylene). Synthetic Metals, 1996, 83, 177-180.	2.1	18