
Jennifer Drummond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5507146/publications.pdf Version: 2024-02-01

IENNIEED DRUMMOND

#	Article	IF	CITATIONS
1	Is the Hyporheic Zone Relevant beyond the Scientific Community?. Water (Switzerland), 2019, 11, 2230.	2.7	113
2	Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research, 2012, 117, .	3.3	99
3	Tracerâ€based characterization of hyporheic exchange and benthic biolayers in streams. Water Resources Research, 2017, 53, 1575-1594.	4.2	80
4	Gathering at the top? Environmental controls of microplastic uptake and biomagnification in freshwater food webs. Environmental Pollution, 2021, 268, 115750.	7.5	75
5	Effects of solute breakthrough curve tail truncation on residence time estimates: A synthesis of solute tracer injection studies. Journal of Geophysical Research, 2012, 117, .	3.3	69
6	Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstems. Science Advances, 2022, 8, eabi9305.	10.3	68
7	Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams. Water Research, 2014, 66, 459-472.	11.3	67
8	Significance of Hyporheic Exchange for Predicting Microplastic Fate in Rivers. Environmental Science and Technology Letters, 2020, 7, 727-732.	8.7	64
9	Stochastic modeling of fine particulate organic carbon dynamics in rivers. Water Resources Research, 2014, 50, 4341-4356.	4.2	53
10	Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach. Environmental Science & Technology, 2015, 49, 7825-7833.	10.0	50
11	FracFit: A robust parameter estimation tool for fractional calculus models. Water Resources Research, 2017, 53, 2559-2567.	4.2	38
12	Fine particle retention within stream storage areas at base flow and in response to a storm event. Water Resources Research, 2017, 53, 5690-5705.	4.2	37
13	Effects of benthic and hyporheic reactive transport on breakthrough curves. Freshwater Science, 2015, 34, 301-315.	1.8	32
14	Benthic biofilm controls on fine particle dynamics in streams. Water Resources Research, 2017, 53, 222-236.	4.2	31
15	Woody debris is related to reachâ€scale hotspots of lowland stream ecosystem respiration under baseflow conditions. Ecohydrology, 2018, 11, e1952.	2.4	31
16	Linking in-stream nutrient uptake to hydrologic retention in two headwater streams. Freshwater Science, 2016, 35, 1176-1188.	1.8	27
17	Exploring Tracer Information and Model Framework Tradeâ€Offs to Improve Estimation of Stream Transient Storage Processes. Water Resources Research, 2019, 55, 3481-3501.	4.2	26
18	Organizational Principles of Hyporheic Exchange Flow and Biogeochemical Cycling in River Networks Across Scales. Water Resources Research, 2022, 58, .	4.2	26

JENNIFER DRUMMOND

#	Article	IF	CITATIONS
19	Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network. Hydrology and Earth System Sciences, 2019, 23, 5199-5225.	4.9	23
20	Impacts of water level on metabolism and transient storage in vegetated lowland rivers: Insights from a mesocosm study. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 628-644.	3.0	22
21	Intrastream variability in solute transport: Hydrologic and geomorphic controls on solute retention. Journal of Geophysical Research F: Earth Surface, 2013, 118, 413-422.	2.8	19
22	Less Fine Particle Retention in a Restored Versus Unrestored Urban Stream: Balance Between Hyporheic Exchange, Resuspension, and Immobilization. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1425-1439.	3.0	17
23	Wastewater treatment plant effluent inputs induce large biogeochemical changes during low flows in an intermittent stream but small changes in day-night patterns. Science of the Total Environment, 2020, 714, 136733.	8.0	16
24	Low flow controls on stream thermal dynamics. Limnologica, 2018, 68, 157-167.	1.5	15
25	Solute Transport and Transformation in an Intermittent, Headwater Mountain Stream with Diurnal Discharge Fluctuations. Water (Switzerland), 2019, 11, 2208.	2.7	14
26	Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological conditions in a 5th-order mountain stream network, Oregon, USA. Earth System Science Data, 2019, 11, 1567-1581.	9.9	14
27	Sensitivity of stoichiometric ratios in the Mississippi River to hydrologic variability. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1049-1062.	3.0	13
28	Emergent Macrophyte Root Architecture Controls Subsurface Solute Transport. Water Resources Research, 2018, 54, 5958-5972.	4.2	13
29	Improving Predictions of Fine Particle Immobilization in Streams. Geophysical Research Letters, 2019, 46, 13853-13861.	4.0	9
30	Cryptosporidium oocyst persistence in agricultural streams –a mobile-immobile model framework assessment. Scientific Reports, 2018, 8, 4603.	3.3	7
31	Advancing river corridor science beyond disciplinary boundaries with an inductive approach to catalyse hypothesis generation. Hydrological Processes, 2022, 36, .	2.6	7
32	Effect of Decreasing Biological Lability on Dissolved Organic Matter Dynamics in Streams. Water Resources Research, 2021, 57, e2020WR027918.	4.2	6
33	Modeling Contaminant Microbes in Rivers During Both Baseflow and Stormflow. Geophysical Research Letters, 2022, 49, .	4.0	6
34	Fine particle transport dynamics in response to wood additions in a small agricultural stream. Hydrological Processes, 2020, 34, 4128-4138.	2.6	3
35	The method controls the story - Sampling method impacts on the detection of pore-water nitrogen concentrations in streambeds. Science of the Total Environment, 2020, 709, 136075.	8.0	2
36	Stream Hydrology Controls the Longitudinal Bioreactive Footprint of Urban-Sourced Fine Particles. Environmental Science & Technology, 2022, 56, 9083-9091.	10.0	1