List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5507082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible conservatism in the skull modularity of convergently evolved myrmecophagous placental mammals. Bmc Ecology and Evolution, 2022, 22, .	1.6	6
2	High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. ELife, 2021, 10, .	6.0	15
3	Aligning Protein-Coding Nucleotide Sequences with MACSE. Methods in Molecular Biology, 2021, 2231, 51-70.	0.9	11
4	Ontogenetic and static allometry in the skull and cranial units of nine-banded armadillos (Cingulata:) Tj ETQq0 0 (673-698.	0 rgBT /Ov 1.6	erlock 10 Tf 11
5	The role of the Neotropics as a source of world tetrapod biodiversity. Global Ecology and Biogeography, 2020, 29, 1565-1578.	5.8	15
6	Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats. MBio, 2020, 11, .	4.1	204
7	MitoFinder: Efficient automated largeâ€scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources, 2020, 20, 892-905.	4.8	785
8	Comparative masticatory myology in anteaters and its implications for interpreting morphological convergence in myrmecophagous placentals. PeerJ, 2020, 8, e9690.	2.0	9
9	Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evolutionary Biology, 2019, 19, 31.	3.2	22
10	Ancient Mitogenomes Reveal the Evolutionary History and Biogeography of Sloths. Current Biology, 2019, 29, 2031-2042.e6.	3.9	99
11	NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. Ecology, 2019, 100, e02663.	3.2	54
12	OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One Hundred Mammalian Genomes. Molecular Biology and Evolution, 2019, 36, 861-862.	8.9	64
13	Evolutionary Tinkering of the Mandibular Canal Linked to Convergent Regression of Teeth in Placental Mammals. Current Biology, 2019, 29, 468-475.e3.	3.9	13
14	Convergent Acquisition of Nonembryonic Development in Styelid Ascidians. Molecular Biology and Evolution, 2018, 35, 1728-1743.	8.9	35
15	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	14.5	90
16	Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180214.	2.6	16
17	Chitinase genes (<i>CHIA</i> s) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Science Advances, 2018, 4, eaar6478.	10.3	55
18	A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology, 2018, 16, 39.	3.8	133

#	Article	IF	CITATIONS
19	MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Molecular Biology and Evolution, 2018, 35, 2582-2584.	8.9	330
20	In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biology and Evolution, 2018, 10, 2218-2239.	2.5	22
21	A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology, 2017, 27, 958-967.	3.9	423
22	The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 2017, 57, 690-704.	2.0	301
23	Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology and Evolution, 2017, 1, 1370-1378.	7.8	247
24	The hidden anatomy of paranasal sinuses reveals biogeographically distinct morphotypes in the nine-banded armadillo (<i>Dasypus novemcinctus</i>). PeerJ, 2017, 5, e3593.	2.0	18
25	Beyond the carapace: skull shape variation and morphological systematics of long-nosed armadillos (genus <i>Dasypus</i>). PeerJ, 2017, 5, e3650.	2.0	15
26	Thrice better than once: quality control guidelines to validate new mitogenomes. Mitochondrial DNA, 2016, 27, 449-454.	0.6	24
27	Predicting biotic interactions and their variability in a changing environment. Biology Letters, 2016, 12, 20151073.	2.3	3
28	ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Research, 2016, 44, D808-D818.	14.5	68
29	Genome-Wide Screening of Retroviral Envelope Genes in the Nine-Banded Armadillo (Dasypus) Tj ETQq1 1 0.784 Receptor. Journal of Virology, 2016, 90, 8132-8149.	-314 rgBT 3.4	/Overlock 10 13
30	Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus) Tj ETQq0 0 0 rgBT /O	verlock 10) T£50 302 Tc
31	The phylogenetic affinities of the extinct glyptodonts. Current Biology, 2016, 26, R155-R156.	3.9	83
32	Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans. Molecular Biology and Evolution, 2016, 33, 621-642.	8.9	167
33	Systematics of hairy armadillos and the taxonomic status of the Andean hairy armadillo (<i>Chaetophractus nationi</i>). Journal of Mammalogy, 2015, 96, 673-689.	1.3	35
34	Naked but Not Hairless: The Pitfalls of Analyses of Molecular Adaptation Based on Few Genome Sequence Comparisons. Genome Biology and Evolution, 2015, 7, 768-774.	2.5	14
35	Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evolutionary Biology, 2015, 15, 148.	3.2	26
36	Evolution of Proteasome Regulators in Eukaryotes. Genome Biology and Evolution, 2015, 7, 1363-1379.	2.5	77

3

#	Article	IF	CITATIONS
37	A cost-effective straightforward protocol for shotgun Illumina libraries designed to assemble complete mitogenomes from non-model species. Conservation Genetics Resources, 2015, 7, 37-40.	0.8	32
38	Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular Ecology Resources, 2014, 14, 966-975.	4.8	102
39	Convergence of gut microbiomes in myrmecophagous mammals. Molecular Ecology, 2014, 23, 1301-1317.	3.9	311
40	OrthoMaM v8: A Database of Orthologous Exons and Coding Sequences for Comparative Genomics in Mammals. Molecular Biology and Evolution, 2014, 31, 1923-1928.	8.9	77
41	Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae). Molecular Phylogenetics and Evolution, 2013, 69, 728-739.	2.7	55
42	Less Is More in Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the Root of Placental Mammals. Molecular Biology and Evolution, 2013, 30, 2134-2144.	8.9	158
43	Evolutionary and mechanistic insights into substrate and product accommodation of <scp>CTP</scp> :phosphocholine cytidylyltransferase from <i><scp>P</scp>lasmodiumÂfalciparum</i> . FEBS Journal, 2013, 280, 3132-3148.	4.7	16
44	Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes. Genome Biology and Evolution, 2013, 5, 1185-1199.	2.5	56
45	Fossil Rhabdoviral Sequences Integrated into Arthropod Genomes: Ontogeny, Evolution, and Potential Functionality. Molecular Biology and Evolution, 2012, 29, 381-390.	8.9	100
46	Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos. Molecular Phylogenetics and Evolution, 2012, 62, 673-680.	2.7	90
47	Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus - Biologies, 2012, 335, 32-50.	0.2	448
48	Evolutionary and Functional Analyses of the Interaction between the Myeloid Restriction Factor SAMHD1 and the Lentiviral Vpx Protein. Cell Host and Microbe, 2012, 11, 205-217.	11.0	169
49	RUNX2 tandem repeats and the evolution of facial length in placental mammals. BMC Evolutionary Biology, 2012, 12, 103.	3.2	35
50	Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 2012, 10, 65.	3.8	296
51	JOINT RECONSTRUCTION OF DIVERGENCE TIMES AND LIFE-HISTORY EVOLUTION IN PLACENTAL MAMMALS USING A PHYLOGENETIC COVARIANCE MODEL. Evolution; International Journal of Organic Evolution, 2012, 66, 1773-1787.	2.3	71
52	MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS ONE, 2011, 6, e22594.	2.5	546
53	Phylogenetic analyses of mitochondrial and nuclear data in haematophagous flies support the paraphyly of the genus Stomoxys (Diptera: Muscidae). Infection, Genetics and Evolution, 2011, 11, 663-670.	2.3	21
54	Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Molecular Biology and Evolution, 2011, 28, 2761-2772.	8.9	114

#	Article	IF	CITATIONS
55	Accelerated Evolutionary Rate of Housekeeping Genes in Tunicates. Journal of Molecular Evolution, 2010, 71, 153-167.	1.8	40
56	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	12.6	251
57	IS LEPROSY SPREADING AMONG NINE-BANDED ARMADILLOS IN THE SOUTHEASTERN UNITED STATES?. Journal of Wildlife Diseases, 2009, 45, 144-152.	0.8	41
58	PhyloExplorer: a web server to validate, explore and query phylogenetic trees. BMC Evolutionary Biology, 2009, 9, 108.	3.2	16
59	An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evolutionary Biology, 2009, 9, 187.	3.2	133
60	Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics, 2009, 10, 534.	2.8	54
61	Estimating Maximum Likelihood Phylogenies with PhyML. Methods in Molecular Biology, 2009, 537, 113-137.	0.9	771
62	Additional molecular support for the new chordate phylogeny. Genesis, 2008, 46, 592-604.	1.6	207
63	Conserved Features and Evolutionary Shifts of the EDA Signaling Pathway Involved in Vertebrate Skin Appendage Development. Molecular Biology and Evolution, 2008, 25, 912-928.	8.9	42
64	Retroposed Elements and Their Flanking Regions Resolve the Evolutionary History of Xenarthran Mammals (Armadillos, Anteaters, and Sloths). Molecular Biology and Evolution, 2007, 24, 2573-2582.	8.9	82
65	Resolving the root of the avian mitogenomic tree by breaking up long branches. Molecular Phylogenetics and Evolution, 2007, 42, 1-13.	2.7	116
66	OrthoMaM: A database of orthologous genomic markers for placental mammal phylogenetics. BMC Evolutionary Biology, 2007, 7, 241.	3.2	120
67	Molecular evidence for hybridisation between the two living species of South American ratites: potential conservation implications. Conservation Genetics, 2007, 8, 503-507.	1.5	6
68	Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature, 2006, 442, 684-687.	27.8	177
69	Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 2006, 439, 965-968.	27.8	1,488
70	Phylogenomics: the beginning of incongruence?. Trends in Genetics, 2006, 22, 225-231.	6.7	644
71	Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology, 2005, 5, 50.	3.2	269
72	Visualizing Conflicting Evolutionary Hypotheses in Large Collections of Trees: Using Consensus Networks to Study the Origins of Placentals and Hexapods. Systematic Biology, 2005, 54, 66-76.	5.6	54

#	Article	lF	CITATIONS
73	Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics, 2005, 6, 361-375.	16.3	1,038
74	Phylogenomics. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 541-562.	8.3	303
75	Relaxed Molecular Clock Provides Evidence for Long-Distance Dispersal of Nothofagus (Southern) Tj ETQq1 1 0.7	84314 rgE	BT /Overlock 177
76	Genome-Scale Phylogeny and the Detection of Systematic Biases. Molecular Biology and Evolution, 2004, 21, 1455-1458.	8.9	412
77	Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evolutionary Biology, 2004, 4, 11.	3.2	174
78	The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15386-15391.	7.1	566
79	Comment on "Hexapod Origins: Monophyletic or Paraphyletic?". Science, 2003, 301, 1482d-1482.	12.6	143
80	Local Molecular Clocks in Three Nuclear Genes: Divergence Times for Rodents and Other Mammals and Incompatibility Among Fossil Calibrations. Journal of Molecular Evolution, 2003, 57, S201-S213.	1.8	92
81	Molecular systematics of armadillos (Xenarthra, Dasypodidae): contribution of maximum likelihood and Bayesian analyses of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 2003, 28, 261-275.	2.7	76
82	Comparison of Bayesian and Maximum Likelihood Bootstrap Measures of Phylogenetic Reliability. Molecular Biology and Evolution, 2003, 20, 248-254.	8.9	460
83	Army Ants Trapped by Their Evolutionary History. PLoS Biology, 2003, 1, e37.	5.6	12
84	Molecular Phylogeny of Living Xenarthrans and the Impact of Character and Taxon Sampling on the Placental Tree Rooting. Molecular Biology and Evolution, 2002, 19, 1656-1671.	8.9	214
85	The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil <i>Eurotamandua</i> . Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1605-1615.	2.6	137
86	Armadillos exhibit less genetic polymorphism in North America than in South America: nuclear and mitochondrial data confirm a founder effect in Dasypus novemcinctus (Xenarthra). Molecular Ecology, 1999, 8, 1743-1748.	3.9	40
87	Skull shape variation in extant pangolins (Pholidota: Manidae): allometric patterns and systematic implications. Zoological Journal of the Linnean Society, 0, , .	2.3	1
88	Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. Open Research Europe, 0, 1, 75.	2.0	3
89	Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. Open Research Europe, 0, 1, 75.	2.0	2