Frédéric Delsuc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5507082/publications.pdf

Version: 2024-02-01

89 papers 14,599 citations

51 h-index 88 g-index

105 all docs

105 docs citations

105 times ranked 15998 citing authors

#	Article	IF	CITATIONS
1	Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 2006, 439, 965-968.	27.8	1,488
2	Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics, 2005, 6, 361-375.	16.3	1,038
3	MitoFinder: Efficient automated largeâ€scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources, 2020, 20, 892-905.	4.8	785
4	Estimating Maximum Likelihood Phylogenies with PhyML. Methods in Molecular Biology, 2009, 537, 113-137.	0.9	771
5	Phylogenomics: the beginning of incongruence?. Trends in Genetics, 2006, 22, 225-231.	6.7	644
6	The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15386-15391.	7.1	566
7	MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS ONE, 2011, 6, e22594.	2.5	546
8	Comparison of Bayesian and Maximum Likelihood Bootstrap Measures of Phylogenetic Reliability. Molecular Biology and Evolution, 2003, 20, 248-254.	8.9	460
9	Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus - Biologies, 2012, 335, 32-50.	0.2	448
10	A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology, 2017, 27, 958-967.	3.9	423
11	Genome-Scale Phylogeny and the Detection of Systematic Biases. Molecular Biology and Evolution, 2004, 21, 1455-1458.	8.9	412
12	MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Molecular Biology and Evolution, 2018, 35, 2582-2584.	8.9	330
13	Convergence of gut microbiomes in myrmecophagous mammals. Molecular Ecology, 2014, 23, 1301-1317.	3.9	311
14	Phylogenomics. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 541-562.	8.3	303
15	The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 2017, 57, 690-704.	2.0	301
16	Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 2012, 10, 65.	3.8	296
17	Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology, 2005, 5, 50.	3.2	269
18	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	12.6	251

#	Article	IF	CITATIONS
19	Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology and Evolution, 2017, 1, 1370-1378.	7.8	247
20	Molecular Phylogeny of Living Xenarthrans and the Impact of Character and Taxon Sampling on the Placental Tree Rooting. Molecular Biology and Evolution, 2002, 19, 1656-1671.	8.9	214
21	Additional molecular support for the new chordate phylogeny. Genesis, 2008, 46, 592-604.	1.6	207
22	Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats. MBio, 2020, 11 , .	4.1	204
23	Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature, 2006, 442, 684-687.	27.8	177
24	Relaxed Molecular Clock Provides Evidence for Long-Distance Dispersal of Nothofagus (Southern) Tj ETQq0 0 0 r	gBŢ Юver	lock 10 Tf 50
25	Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evolutionary Biology, 2004, 4, 11.	3.2	174
26	Evolutionary and Functional Analyses of the Interaction between the Myeloid Restriction Factor SAMHD1 and the Lentiviral Vpx Protein. Cell Host and Microbe, 2012, 11, 205-217.	11.0	169
27	Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans. Molecular Biology and Evolution, 2016, 33, 621-642.	8.9	167
28	Less Is More in Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the Root of Placental Mammals. Molecular Biology and Evolution, 2013, 30, 2134-2144.	8.9	158
29	Comment on "Hexapod Origins: Monophyletic or Paraphyletic?". Science, 2003, 301, 1482d-1482.	12.6	143
30	The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil <i>Eurotamandua</i> . Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1605-1615.	2.6	137
31	An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evolutionary Biology, 2009, 9, 187.	3.2	133
32	A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology, 2018, 16, 39.	3.8	133
33	OrthoMaM: A database of orthologous genomic markers for placental mammal phylogenetics. BMC Evolutionary Biology, 2007, 7, 241.	3.2	120
34	Resolving the root of the avian mitogenomic tree by breaking up long branches. Molecular Phylogenetics and Evolution, 2007, 42, 1-13.	2.7	116
35	Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Molecular Biology and Evolution, 2011, 28, 2761-2772.	8.9	114
36	Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular Ecology Resources, 2014, 14, 966-975.	4.8	102

#	Article	lF	Citations
37	Fossil Rhabdoviral Sequences Integrated into Arthropod Genomes: Ontogeny, Evolution, and Potential Functionality. Molecular Biology and Evolution, 2012, 29, 381-390.	8.9	100
38	Ancient Mitogenomes Reveal the Evolutionary History and Biogeography of Sloths. Current Biology, 2019, 29, 2031-2042.e6.	3.9	99
39	Local Molecular Clocks in Three Nuclear Genes: Divergence Times for Rodents and Other Mammals and Incompatibility Among Fossil Calibrations. Journal of Molecular Evolution, 2003, 57, S201-S213.	1.8	92
40	Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos. Molecular Phylogenetics and Evolution, 2012, 62, 673-680.	2.7	90
41	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	14.5	90
42	The phylogenetic affinities of the extinct glyptodonts. Current Biology, 2016, 26, R155-R156.	3.9	83
43	Retroposed Elements and Their Flanking Regions Resolve the Evolutionary History of Xenarthran Mammals (Armadillos, Anteaters, and Sloths). Molecular Biology and Evolution, 2007, 24, 2573-2582.	8.9	82
44	OrthoMaM v8: A Database of Orthologous Exons and Coding Sequences for Comparative Genomics in Mammals. Molecular Biology and Evolution, 2014, 31, 1923-1928.	8.9	77
45	Evolution of Proteasome Regulators in Eukaryotes. Genome Biology and Evolution, 2015, 7, 1363-1379.	2.5	77
46	Molecular systematics of armadillos (Xenarthra, Dasypodidae): contribution of maximum likelihood and Bayesian analyses of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 2003, 28, 261-275.	2.7	76
47	JOINT RECONSTRUCTION OF DIVERGENCE TIMES AND LIFE-HISTORY EVOLUTION IN PLACENTAL MAMMALS USING A PHYLOGENETIC COVARIANCE MODEL. Evolution; International Journal of Organic Evolution, 2012, 66, 1773-1787.	2.3	71
48	ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Research, 2016, 44, D808-D818.	14.5	68
49	OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One Hundred Mammalian Genomes. Molecular Biology and Evolution, 2019, 36, 861-862.	8.9	64
50	Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes. Genome Biology and Evolution, 2013, 5, 1185-1199.	2.5	56
51	Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae). Molecular Phylogenetics and Evolution, 2013, 69, 728-739.	2.7	55
52	Chitinase genes (<i>CHIA</i> s) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Science Advances, 2018, 4, eaar6478.	10.3	55
53	Visualizing Conflicting Evolutionary Hypotheses in Large Collections of Trees: Using Consensus Networks to Study the Origins of Placentals and Hexapods. Systematic Biology, 2005, 54, 66-76.	5. 6	54
54	Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics, 2009, 10, 534.	2.8	54

#	Article	IF	Citations
55	NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. Ecology, 2019, 100, e02663.	3.2	54
56	Conserved Features and Evolutionary Shifts of the EDA Signaling Pathway Involved in Vertebrate Skin Appendage Development. Molecular Biology and Evolution, 2008, 25, 912-928.	8.9	42
57	IS LEPROSY SPREADING AMONG NINE-BANDED ARMADILLOS IN THE SOUTHEASTERN UNITED STATES?. Journal of Wildlife Diseases, 2009, 45, 144-152.	0.8	41
58	Armadillos exhibit less genetic polymorphism in North America than in South America: nuclear and mitochondrial data confirm a founder effect in Dasypus novemcinctus (Xenarthra). Molecular Ecology, 1999, 8, 1743-1748.	3.9	40
59	Accelerated Evolutionary Rate of Housekeeping Genes in Tunicates. Journal of Molecular Evolution, 2010, 71, 153-167.	1.8	40
60	RUNX2 tandem repeats and the evolution of facial length in placental mammals. BMC Evolutionary Biology, 2012, 12, 103.	3.2	35
61	Systematics of hairy armadillos and the taxonomic status of the Andean hairy armadillo (<i>Chaetophractus nationi</i>). Journal of Mammalogy, 2015, 96, 673-689.	1.3	35
62	Convergent Acquisition of Nonembryonic Development in Styelid Ascidians. Molecular Biology and Evolution, 2018, 35, 1728-1743.	8.9	35
63	A cost-effective straightforward protocol for shotgun Illumina libraries designed to assemble complete mitogenomes from non-model species. Conservation Genetics Resources, 2015, 7, 37-40.	0.8	32
64	Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evolutionary Biology, 2015, 15, 148.	3.2	26
65	Thrice better than once: quality control guidelines to validate new mitogenomes. Mitochondrial DNA, 2016, 27, 449-454.	0.6	24
66	In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biology and Evolution, 2018, 10, 2218-2239.	2.5	22
67	Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evolutionary Biology, 2019, 19, 31.	3.2	22
68	Phylogenetic analyses of mitochondrial and nuclear data in haematophagous flies support the paraphyly of the genus Stomoxys (Diptera: Muscidae). Infection, Genetics and Evolution, 2011, 11, 663-670.	2.3	21
69	The hidden anatomy of paranasal sinuses reveals biogeographically distinct morphotypes in the nine-banded armadillo (<i>Dasypus novemcinctus</i>). Peerl, 2017, 5, e3593.	2.0	18
70	PhyloExplorer: a web server to validate, explore and query phylogenetic trees. BMC Evolutionary Biology, 2009, 9, 108.	3.2	16
71	Evolutionary and mechanistic insights into substrate and product accommodation of <scp>CTP</scp> :phosphocholine cytidylyltransferase from <i><scp>P</scp>lasmodiumÂfalciparum</i> FEBS Journal, 2013, 280, 3132-3148.	4.7	16
72	Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180214.	2.6	16

#	Article	IF	CITATIONS
73	The role of the Neotropics as a source of world tetrapod biodiversity. Global Ecology and Biogeography, 2020, 29, 1565-1578.	5.8	15
74	High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. ELife, $2021,10,10$	6.0	15
75	Beyond the carapace: skull shape variation and morphological systematics of long-nosed armadillos (genus <i>Dasypus</i>). Peerl, 2017, 5, e3650.	2.0	15
76	Naked but Not Hairless: The Pitfalls of Analyses of Molecular Adaptation Based on Few Genome Sequence Comparisons. Genome Biology and Evolution, 2015, 7, 768-774.	2.5	14
77	Genome-Wide Screening of Retroviral Envelope Genes in the Nine-Banded Armadillo (Dasypus) Tj ETQq1 1 0.784 Receptor. Journal of Virology, 2016, 90, 8132-8149.	314 rgBT 3.4	/Overlock 10 13
78	Evolutionary Tinkering of the Mandibular Canal Linked to Convergent Regression of Teeth in Placental Mammals. Current Biology, 2019, 29, 468-475.e3.	3.9	13
79	Army Ants Trapped by Their Evolutionary History. PLoS Biology, 2003, 1, e37.	5.6	12
80	Ontogenetic and static allometry in the skull and cranial units of nine-banded armadillos (Cingulata:) Tj ETQq0 0 673-698.	0 rgBT /0 1.6	verlock 10 Tf 11
81	Aligning Protein-Coding Nucleotide Sequences with MACSE. Methods in Molecular Biology, 2021, 2231, 51-70.	0.9	11
82	Comparative masticatory myology in anteaters and its implications for interpreting morphological convergence in myrmecophagous placentals. PeerJ, 2020, 8, e9690.	2.0	9
83	Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus) Tj ETQq1 1 0.784314	ł rgBT /Ov	erlock 10 Tf 5
84	Molecular evidence for hybridisation between the two living species of South American ratites: potential conservation implications. Conservation Genetics, 2007, 8, 503-507.	1.5	6
85	Flexible conservatism in the skull modularity of convergently evolved myrmecophagous placental mammals. Bmc Ecology and Evolution, 2022, 22, .	1.6	6
86	Predicting biotic interactions and their variability in a changing environment. Biology Letters, 2016, 12, 20151073.	2.3	3
87	Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. Open Research Europe, 0, 1, 75.	2.0	3
88	Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. Open Research Europe, 0, 1, 75.	2.0	2
89	Skull shape variation in extant pangolins (Pholidota: Manidae): allometric patterns and systematic implications. Zoological Journal of the Linnean Society, 0, , .	2.3	1