Magda Bienko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5506251/publications.pdf Version: 2024-02-01

MACDA RIENKO

#	Article	IF	CITATIONS
1	A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell, 2019, 179, 1647-1660.e19.	28.9	470
2	Integrated genome and transcriptome sequencing of the same cell. Nature Biotechnology, 2015, 33, 285-289.	17.5	439
3	Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nature Methods, 2013, 10, 361-365.	19.0	409
4	Spatially resolved transcriptomics and beyond. Nature Reviews Genetics, 2015, 16, 57-66.	16.3	406
5	Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell, 2015, 163, 134-147.	28.9	399
6	BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nature Communications, 2017, 8, 15058.	12.8	298
7	A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nature Methods, 2013, 10, 122-124.	19.0	66
8	GPSeq reveals the radial organization of chromatin in the cell nucleus. Nature Biotechnology, 2020, 38, 1184-1193.	17.5	49
9	Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9443-9452.	7.1	48
10	Massive and parallel expression profiling using microarrayed single-cell sequencing. Nature Communications, 2016, 7, 13182.	12.8	44
11	iFISH is a publically available resource enabling versatile DNA FISH to study genome architecture. Nature Communications, 2019, 10, 1636.	12.8	41
12	FuseFISH: Robust Detection of Transcribed Gene Fusions in Single Cells. Cell Reports, 2014, 6, 18-23.	6.4	39
13	Somatic Copy Number Alterations in Human Cancers: An Analysis of Publicly Available Data From The Cancer Genome Atlas. Frontiers in Oncology, 2021, 11, 700568.	2.8	33
14	Radial Organization in the Mammalian Nucleus. Frontiers in Genetics, 2020, 11, 33.	2.3	32
15	RollFISH achieves robust quantification of single-molecule RNA biomarkers in paraffin-embedded tumor tissue samples. Communications Biology, 2018, 1, 209.	4.4	26
16	piRNAs initiate transcriptional silencing of spermatogenic genes during C.Âelegans germline development. Developmental Cell, 2022, 57, 180-196.e7.	7.0	25
17	The era of 3D and spatial genomics. Trends in Genetics, 2022, 38, 1062-1075.	6.7	25
18	Quantification of HER2 and estrogen receptor heterogeneity in breast cancer by single-molecule RNA fluorescence in situ hybridization. Oncotarget, 2017, 8, 18680-18698.	1.8	24

Magda Bienko

#	Article	IF	CITATIONS
19	Nuclear gene proximity and protein interactions shape transcript covariations in mammalian single cells. Nature Communications, 2020, 11, 5445.	12.8	20
20	Genome-wide detection of DNA double-strand breaks by in-suspension BLISS. Nature Protocols, 2020, 15, 3894-3941.	12.0	19
21	Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods. Methods in Molecular Biology, 2018, 1672, 167-194.	0.9	15
22	COVseq is a cost-effective workflow for mass-scale SARS-CoV-2 genomic surveillance. Nature Communications, 2021, 12, 3903.	12.8	14
23	CUTseq is a versatile method for preparing multiplexed DNA sequencing libraries from low-input samples. Nature Communications, 2019, 10, 4732.	12.8	12
24	RNA gradients: Shapers of 3D genome architecture. Current Opinion in Cell Biology, 2022, 74, 7-12.	5.4	11
25	An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics. Methods in Molecular Biology, 2018, 1766, 303-333.	0.9	8
26	Breaks Labeling in situ and sequencing (BLISS). Protocol Exchange, 0, , .	0.3	4
27	iFISH:a publically available resource enabling versatile DNA FISH to study genome architecture. Protocol Exchange, 0, , .	0.3	3
28	An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination. Scientific Data, 2022, 9, .	5.3	3
29	Simultaneous visualization of DNA loci in single cells by combinatorial multi-color iFISH. Scientific Data, 2022, 9, 47.	5.3	2
30	An Organ-Wide Gene Expression Atlas of the Developing Human Heart. SSRN Electronic Journal, 0, , .	0.4	1
31	Role of UbL Family Modifiers and Their Binding Proteins in Cell Signaling. Methods in Molecular Biology, 2012, 832, 163-171.	0.9	0