
Zi-Fu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5505949/publications.pdf Version: 2024-02-01

71-F11 7HAO

#	Article	IF	CITATIONS
1	Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 2007, 96, 127-150.	1.4	510
2	Zircon U-Pb and oxygen isotope evidence for a large-scale 180 depletion event in igneous rocks during the Neoproterozoic. Geochimica Et Cosmochimica Acta, 2004, 68, 4145-4165.	3.9	480
3	Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 2006, 231, 135-158.	3.3	448
4	Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 2006, 151, 265-288.	2.7	359
5	Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 2006, 146, 179-212.	2.7	349
6	Zircon isotope evidence for ≥3.5Ga continental crust in the Yangtze craton of China. Precambrian Research, 2006, 146, 16-34.	2.7	348
7	Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 2009, 475, 327-358.	2.2	299
8	U–Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica Et Cosmochimica Acta, 2006, 70, 3743-3761.	3.9	271
9	Calculation of oxygen isotope fractionation in magmatic rocks. Chemical Geology, 2003, 193, 59-80.	3.3	228
10	Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 2009, 110, 305-326.	1.4	219
11	Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 2010, 119, 512-536.	1.4	205
12	Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China Series D: Earth Sciences, 2009, 52, 1295-1318.	0.9	188
13	Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochimica Et Cosmochimica Acta, 2002, 66, 625-634.	3.9	182
14	Post-collisional granitoids from the Dabie orogen in China: Zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 2007, 93, 248-272.	1.4	169
15	Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology, 2006, 229, 227-256.	3.3	153
16	Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology, 2008, 253, 222-242.	3.3	152
17	Zircon U–Pb age, element and C–O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 2005, 83, 1-28.	1.4	150
18	Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chemical Geology, 2012, 328, 70-88.	3.3	149

#	Article	IF	CITATIONS
19	Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica Et Cosmochimica Acta, 2007, 71, 5244-5266.	3.9	140
20	Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 2013, 3, 3413.	3.3	130
21	Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China. Lithos, 2009, 113, 347-368.	1.4	120
22	Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth-Science Reviews, 2017, 173, 266-294.	9.1	120
23	Slab–mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 2012, 146-147, 202-217.	1.4	111
24	Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos, 2016, 258-259, 77-91.	1.4	109
25	Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 2011, 125, 940-955.	1.4	106
26	Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen. Geochimica Et Cosmochimica Acta, 2007, 71, 2299-2325.	3.9	102
27	Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust–mantle interaction and crustal architecture. Lithos, 2011, 126, 99-114.	1.4	102
28	Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 2014, 190-191, 220-239.	1.4	99
29	Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 2002, 30, 375.	4.4	98
30	lsotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology, 2006, 24, 687-702.	3.4	97
31	The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology, 2015, 395, 11-26.	3.3	97
32	Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophysical Research Letters, 2004, 31, .	4.0	96
33	Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. Journal of Asian Earth Sciences, 2017, 145, 260-277.	2.3	96
34	Chemical geodynamics of mafic magmatism above subduction zones. Journal of Asian Earth Sciences, 2020, 194, 104185.	2.3	92
35	Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology, 2006, 231, 214-235.	3.3	90
36	Ultrahigh-pressure metamorphic rocks in the Dabie–Sulu orogenic belt: compositional inheritance and metamorphic modification. Geological Society Special Publication, 2019, 474, 89-132.	1.3	89

#	Article	IF	CITATIONS
37	Zircon Hf–O isotope evidence for crust–mantle interaction during continental deep subduction. Earth and Planetary Science Letters, 2011, 308, 229-244.	4.4	86
38	Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos, 2016, 240-243, 327-336.	1.4	83
39	Zircon U–Pb dating of water–rock interaction during Neoproterozoic rift magmatism in South China. Chemical Geology, 2007, 246, 65-86.	3.3	81
40	Zircon Hf–O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 2012, 136-139, 225-245.	1.4	81
41	The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic–ultramafic rocks in the Dabie orogen. Chemical Geology, 2012, 334, 99-121.	3.3	79
42	Temporal relationship between granite cooling and hydrothermal uranium mineralization at Dalongshan in China: a combined radiometric and oxygen isotopic study. Ore Geology Reviews, 2004, 25, 221-236.	2.7	75
43	Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites. Lithos, 2014, 210-211, 40-56.	1.4	68
44	Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong'an–Dabie orogens. Gondwana Research, 2015, 27, 1236-1254.	6.0	63
45	Introduction to the structures and processes of subduction zones. Journal of Asian Earth Sciences, 2017, 145, 1-15.	2.3	61
46	Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 2012, 146-147, 164-182.	1.4	59
47	Slab–mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 2012, 155, 442-460.	1.4	58
48	Origin of continental arc andesites: The composition of source rocks is the key. Journal of Asian Earth Sciences, 2017, 145, 217-232.	2.3	51
49	Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200–4000Âm core samples of the Chinese Continental Scientific Drilling. Chemical Geology, 2007, 242, 51-75.	3.3	48
50	Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite?gneiss contacts from Chinese Continental Scientific Drilling Project cores. Journal of Metamorphic Geology, 2007, 25, 165-186.	3.4	42
51	Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts. Journal of Petrology, 2017, 58, 863-884.	2.8	42
52	Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochemistry, Geophysics, Geosystems, 2014, 15, 3762-3779.	2.5	39
53	Geochemical constraints on the origin of Late Mesozoic andesites from the Ningwu basin in the Middle–Lower Yangtze Valley, South China. Lithos, 2016, 254-255, 94-117.	1.4	36
54	Geochemical constraints on the source nature and melting conditions of Triassic granites from South Qinling in central China. Lithos, 2016, 264, 141-157.	1.4	36

#	Article	IF	CITATIONS
55	Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen. Chemical Geology, 2017, 454, 25-43.	3.3	34
56	Recycling of Paleotethyan oceanic crust: Geochemical record from postcollisional mafic igneous rocks in the Tongbai-Hong'an orogens. Bulletin of the Geological Society of America, 2017, 129, 179-192.	3.3	32
57	Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemistry, Geophysics, Geosystems, 2015, 16, 659-680.	2.5	30
58	Slab–Mantle Interaction in the Petrogenesis of Andesitic Magmas: Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China. Journal of Petrology, 2016, 57, 1109-1134.	2.8	29
59	The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 2017, 268-271, 302-319.	1.4	28
60	The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochimica Et Cosmochimica Acta, 2014, 143, 285-302.	3.9	27
61	Relationships between O isotope equilibrium, mineral alteration and Rb–Sr chronometric validity in granitoids: implications for determination of cooling rate. Contributions To Mineralogy and Petrology, 2007, 153, 251-271.	3.1	24
62	Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet. Bulletin of the Geological Society of America, 2020, 132, 1347-1364.	3.3	22
63	Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. Geoscience Frontiers, 2021, 12, 101124.	8.4	22
64	Tectonic transition from oceanic subduction to continental collision: New geochemical evidence from Early-Middle Triassic mafic igneous rocks in southern Liaodong Peninsula, east-central China. Bulletin of the Geological Society of America, 2020, 132, 1469-1488.	3.3	20
65	Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. Journal of Asian Earth Sciences, 2016, 123, 142-161.	2.3	18
66	Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts. Scientific Reports, 2018, 8, 178.	3.3	17
67	Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China. Lithos, 2018, 302-303, 86-98.	1.4	17
68	The geochemical nature of mantle sources for two types of Cretaceous basaltic rocks from Luxi and Jiaodong in east-central China. Lithos, 2019, 344-345, 409-424.	1.4	17
69	Origin of arc-like magmatism at fossil convergent plate boundaries: Geochemical insights from Mesozoic igneous rocks in the Middle to Lower Yangtze Valley, South China. Earth-Science Reviews, 2020, 211, 103416.	9.1	17
70	Geochemical constraints on the nature of magma sources for Triassic granitoids from South Qinling in central China. Lithos, 2017, 284-285, 30-49.	1.4	16
71	Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China. Lithos, 2018, 300-301, 261-277.	1.4	15
72	Postcollisional mafic igneous rocks record recycling of noble gases by deep subduction of the continental crust. Lithos, 2016, 252-253, 135-144.	1.4	14

#	Article	lF	CITATIONS
73	Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up. International Geology Review, 2023, 65, 1000-1016.	2.1	14
74	The composition of garnet in granite and pegmatite from the Gangdese orogen in southeastern Tibet: Constraints on pegmatite petrogenesis. American Mineralogist, 2021, 106, 265-281.	1.9	12
75	Syn-exhumation magmatism in an active continental margin above a continental subduction zone: Evidence from Late Triassic mafic igneous rocks in the southeastern North China Block. Bulletin of the Geological Society of America, 2021, 133, 1267-1282.	3.3	11
76	Origin of peraluminous A-type granites from appropriate sources at moderate to low pressures and high temperatures. Lithos, 2020, 352-353, 105287.	1.4	9
77	Syn-exhumation melting of the subducted continental crust: Geochemical evidence from early Paleozoic granitoids in North Qaidam, northern Tibet. Lithos, 2020, 374-375, 105707.	1.4	9
78	Syn-exhumation magmatism during continental collision: Geochemical evidence from the early Paleozoic Fushui mafic rocks in the Qinling orogen, Central China. Lithos, 2020, 352-353, 105318.	1.4	8
79	Geochemical Distinction Between Altered Oceanic Basalt- and Seafloor Sediment-Derived Fluids in the Mantle Source of Mafic Igneous Rocks in Southwestern Tianshan, Western China. Journal of Petrology, 2021, 62, .	2.8	8
80	Origin of syn-collisional granitoids in the Gangdese orogen: Reworking of the juvenile arc crust and the ancient continental crust. Bulletin of the Geological Society of America, 2022, 134, 577-598.	3.3	8
81	Barium isotope fractionation during dehydration melting of the subducting oceanic crust: Geochemical evidence from OIB-like continental basalts. Chemical Geology, 2022, 594, 120751.	3.3	8
82	Comment on "Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing―by Qiu and Wijbrans (2006). Geochimica Et Cosmochimica Acta, 2007, 71, 6046-6050.	3.9	7
83	The effect of crystal fractionation on the geochemical composition of syn-exhumation magmas: Implication for the formation of high δ56Fe granites in collisional orogens. Geochimica Et Cosmochimica Acta, 2022, 332, 156-185.	3.9	7
84	Magnesium-carbon isotopes trace carbon recycling in continental subduction zone. Lithos, 2020, 376-377, 105774.	1.4	6
85	Mesozoic reworking of the Paleozoic subducted continental crust beneath the south-central margin of the North China Block: Geochemical evidence from granites in the Xiaoqinling-Xiong'ershan region. Lithos, 2020, , 105886.	1.4	5
86	Continental crust recycling in ancient oceanic subduction zone: Geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos, 2022, 414-415, 106619.	1.4	5
87	Whole-rock geochemical and zircon Hf–O isotopic constraints on the origin of granitoids and their mafic enclaves from the Triassic Mishuling pluton in West Qinling, central China. Journal of Asian Earth Sciences, 2020, 189, 104136.	2.3	4
88	The compositional variation of I-type granites: Constraints from geochemical analyses and phase equilibrium calculations for granites from the Qinling orogen, central China. Journal of Asian Earth Sciences, 2020, 200, 104471.	2.3	4
89	Dual sources of water overprinting on the low zircon δ180 metamorphic country rocks: Disequilibrium constrained through inverse modelling of partial reequilibration. Scientific Reports, 2017, 7, 40334.	3.3	3
90	Theoretical inversion of the fossil hydrothermal systems with oxygen isotopes of constituent minerals partially re-equilibrated with externally infiltrated fluids. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2021, 112, 101-110.	0.3	1

#	Article	IF	CITATIONS
91	Low H2O/Ce ratios and $\hat{l}'18O$ values for continental basalts in eastern China: Geochemical evidence for involvement of the dehydrated crustal component in the mantle source. Lithos, 2021, 400-401, 106339.	1.4	1
92	Magma differentiation and recharge in the petrogenesis of early paleozoic mafic intrusives in the Qilian orogen, northwestern China. Lithos, 2021, , 106492.	1.4	0