List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504256/publications.pdf Version: 2024-02-01

MIN WANC

4

#	Article	IF	CITATIONS
1	Controlled pVEGF delivery via a gene-activated matrix comprised of a peptide-modified non-viral vector and a nanofibrous scaffold for skin wound healing. Acta Biomaterialia, 2022, 140, 149-162.	8.3	22
2	Double-crosslinked bifunctional hydrogels with encapsulated anti-cancer drug for bone tumor cell ablation and bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112364.	5.0	14
3	Hybrid ceramics-based cancer theranostics. Journal of the Korean Ceramic Society, 2022, 59, 401-426.	2.3	8
4	Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomaterialia, 2021, 123, 312-324.	8.3	22
5	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	11.3	46
6	4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Materials and Design, 2021, 205, 109699.	7.0	77
7	4D Printing of Self-Folding Hydrogel Tubes for Potential Tissue Engineering Applications. Nano LIFE, 2021, 11, .	0.9	8
8	Cell-Incorporated Bioactive Tissue Engineering Scaffolds made by Concurrent Cell Electrospinning and Emulsion Electrospinning. Nano LIFE, 2021, 11, .	0.9	5
9	Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization. Journal of Materials Chemistry B, 2020, 8, 636-647.	5.8	16
10	Phase Inversion-Based Technique for Fabricating Bijels and Bijels-Derived Structures with Tunable Microstructures. Langmuir, 2020, 36, 14644-14655.	3.5	11
11	3D Printed porous tissue engineering scaffolds with the self-folding ability and controlled release of growth factor. MRS Communications, 2020, 10, 579-586.	1.8	12
12	Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Biofabrication, 2020, 12, 025030.	7.1	54
13	Cryogenic 3D printing of porous scaffolds for <i>in situ</i> delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication, 2020, 12, 035004.	7.1	68
14	3D printing of bone tissue engineering scaffolds. Bioactive Materials, 2020, 5, 82-91.	15.6	370
15	Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication, 2020, 12, 045025.	7.1	49
16	Manufacture of Biomaterials. , 2019, , 116-134.		25
17	Materials and Their Biomedical Applications. , 2019, , 135-152.		9

Bulk Properties of Biomaterials and Testing Techniques. , 2019, , 53-64.

#	Article	IF	CITATIONS
19	Dual release of VEGF and PDGF from emulsion electrospun bilayer scaffolds consisting of orthogonally aligned nanofibers for gastrointestinal tract regeneration. MRS Communications, 2019, 9, 1098-1104.	1.8	12
20	Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect. Molecules, 2019, 24, 1669.	3.8	55
21	Bicomponent nanofibrous scaffolds with dual release of anticancer drugs and biomacromolecules. MRS Communications, 2019, 9, 413-420.	1.8	7
22	Manipulating the release of growth factors from biodegradable microspheres for potentially different therapeutic effects by using two different electrospray techniques for microsphere fabrication. Polymer Degradation and Stability, 2019, 162, 169-179.	5.8	8
23	Regulation Effects of Biomimetic Hybrid Scaffolds on Vascular Endothelium Remodeling. ACS Applied Materials & Interfaces, 2018, 10, 23583-23594.	8.0	49
24	Electrospun multicomponent and multifunctional nanofibrous bone tissue engineering scaffolds. Journal of Materials Chemistry B, 2017, 5, 1388-1399.	5.8	45
25	Modulating the release of vascular endothelial growth factor by negative-voltage emulsion electrospinning for improved vascular regeneration. Materials Letters, 2017, 193, 1-4.	2.6	28
26	Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication, 2017, 9, 025031.	7.1	83
27	Bicomponent fibrous scaffolds made through dualâ€source dualâ€power electrospinning: Dual delivery of rhBMPâ€2 and Caâ€P nanoparticles and enhanced biological performances. Journal of Biomedical Materials Research - Part A, 2017, 105, 2199-2209.	4.0	11
28	In situ delivery of rhBMP-2 in surface porous shape memory scaffolds developed through cryogenic 3D plotting. Materials Letters, 2017, 189, 140-143.	2.6	25
29	Strategies to incorporate polyelectrolyte in emulsion electrospun nanofibrous tissue engineering scaffolds for modulating growth factor release from the scaffolds. Materials Letters, 2016, 162, 48-52.	2.6	18
30	Electrospun multifunctional tissue engineering scaffolds. Frontiers of Materials Science, 2014, 8, 3-19.	2.2	32
31	A novel technique for the fabrication of 3D nanofibrous scaffolds using simultaneous positive voltage electrospinning and negative voltage electrospinning. Materials Letters, 2013, 94, 116-120.	2.6	26
32	Novel core–shell structured Paclitaxel-loaded PLGA@Ag–Au nanoparticles. Materials Letters, 2013, 92, 350-353.	2.6	22
33	Selective Laser Sintering and Its Biomedical Applications. Biological and Medical Physics Series, 2013, , 83-109.	0.4	7
34	Novel Electrospun Bicomponent Scaffolds for Bone Tissue Engineering: Fabrication, Characterization and Sustained Release of Growth Factor. Materials Research Society Symposia Proceedings, 2012, 1418, 151.	0.1	0
35	Electrospinning and Evaluation of PHBV-Based Tissue Engineering Scaffolds with Different Fibre Diameters, Surface Topography and Compositions. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 779-806.	3.5	18
36	Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2381-2397.	3.6	43

#	Article	IF	CITATIONS
37	Editorial: Biomaterials at PacRim9. Journal of Materials Science: Materials in Medicine, 2012, 23, 2315-2316.	3.6	0
38	A new nanofiber fabrication technique based on coaxial electrospinning. Materials Letters, 2012, 66, 257-260.	2.6	32
39	Customized Nanocomposite Scaffolds Fabricated via Selective Laser Sintering for Bone Tissue Engineering. , 2012, , 925-953.		2
40	Nanocomposite Scaffolds for Bone Tissue Engineering: Design, Fabrication, Surface Modification and Sustained Release of Growth Factor. Materials Research Society Symposia Proceedings, 2011, 1301, 99.	0.1	4
41	Surface characteristics, properties and in vitro biological assessment of a NiTi shape memory alloy after high temperature heat treatment or surface H2O2-oxidation: A comparative study. Materials Chemistry and Physics, 2011, 130, 45-58.	4.0	13
42	Electrospun Poly(Hydroxybutyrate-co-Hydroxyvalerate) Fibrous Membranes Consisting of Parallel-Aligned Fibers or Cross-Aligned Fibers: Characterization and Biological Evaluation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2475-2497.	3.5	13
43	Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation. Frontiers of Materials Science, 2011, 5, 57-68.	2.2	21
44	Electrospinning of poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) fibrous tissue engineering scaffolds in two different electric fields. Polymer Engineering and Science, 2011, 51, 1325-1338.	3.1	13
45	Nonisothermal meltâ€crystallization behavior of calcium phosphate/poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) nanocomposite microspheres. Polymer Engineering and Science, 2011, 51, 1580-1591.	3.1	13
46	(Ti, O)/Ti and (Ti, O, N)/Ti composite coatings fabricated via PIIID for the medical application of NiTi shape memory alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 249-260.	3.4	22
47	An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) fibers. Journal of Applied Polymer Science, 2011, 120, 1694-1706.	2.6	48
48	Characteristics and in vitro biological assessment of (Ti, O, N)/Ti composite coating formed on NiTi shape memory alloy. Thin Solid Films, 2011, 519, 4623-4628.	1.8	8
49	Selective laser sintering and its application in biomedical engineering. MRS Bulletin, 2011, 36, 998-1005.	3.5	69
50	Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication, 2011, 3, 015001.	7.1	108
51	Encapsulation and release of biomolecules from Ca–P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polymer Degradation and Stability, 2010, 95, 1655-1664.	5.8	69
52	Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomaterialia, 2010, 6, 4495-4505.	8.3	366
53	Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. Journal of the Royal Society Interface, 2010, 7, S615-29.	3.4	131
54	A comparative study on titania layers formed on Ti, Ti-6Al-4V and NiTi shape memory alloy through a low temperature oxidation process. Surface and Coatings Technology, 2010, 205, 92-101.	4.8	32

#	Article	IF	CITATIONS
55	Electrochemical Deposition of Apatite/Collagen Composite Coating on NiTi Shape Memory Alloy and Coating Properties. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	1
56	Fabrication of (Ti-O-N-Si)/Ti Composite Coating on NiTi Shape Memory Alloy Using PIIID and Coating Evaluation. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	1
57	Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19, 2555-2561.	3.6	150
58	Guest Editorial: Composites in medicine (Special Issue for the Symposium on Composites in Medicine at) Tj ETQq	0 0 0 rgBT 3.6	Qverlock 1
59	Developing bioactive composite materials for tissue replacement. Biomaterials, 2003, 24, 2133-2151.	11.4	654

60	Electrospinning and Electrospraying with Cells for Applications in Biomanufacturing. Nano LIFE, 0, , 2141003.	0.9	1
61	Core-Shell Structured Theranotics. Nano LIFE, 0, , 2141004.	0.9	2