Dezene P W Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosomeâ€level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, <i>Dendroctonus ponderosae</i> Hopkins (Coleoptera: Curculionidae). Molecular Ecology Resources, 2022, 22, 1149-1167.	4.8	11
2	Special issue on managing bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) with semiochemicals: honouring the remarkable career of Dr. Steven J. Seybold. Canadian Entomologist, 2021, 153, 1-3.	0.8	0
3	Disruption of coniferophagous bark beetle (Coleoptera: Curculionidae: Scolytinae) mass attack using angiosperm nonhost volatiles: from concept to operational use. Canadian Entomologist, 2021, 153, 19-35.	0.8	9
4	Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, <i>Dendroctonus ponderosae</i> Hopkins (Coleoptera: Curculionidae). PeerJ, 2021, 9, e12382.	2.0	1
5	Random and Directed Movement by Warren Root Collar Weevils (Coleoptera: Curculionidae), Relative to Size and Distance of Host Lodgepole Pine Trees. Journal of Insect Science, 2020, 20, .	1.5	2
6	Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. PLoS ONE, 2020, 15, e0227203.	2.5	4
7	Determining diets for fishes (Actinopterygii) from a small interior British Columbia, Canada stream: a comparison of morphological and molecular approaches. Canadian Entomologist, 2020, 152, 702-720.	0.8	2
8	Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. , 2020, 15, e0227203.		0
9	Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. , 2020, 15, e0227203.		0
10	Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. , 2020, 15, e0227203.		0
11	Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. , 2020, 15, e0227203.		0
12	TRIA-Net: 10 years of collaborative research on turning risk into action for the mountain pine beetle epidemic. Canadian Journal of Forest Research, 2019, 49, iii-v.	1.7	4
13	Eight New Provincial Species Records of Mayflies (Ephemeroptera) from One Arctic Watershed River in British Columbia. Western North American Naturalist, 2019, 79, 1.	0.4	0
14	Congratulations to The Canadian Entomologist on this, its sesquicentennial anniversary!. Canadian Entomologist, 2018, 150, 1-11.	0.8	3
15	The Effect of Feeding and Mate Presence on the Pheromone Production of the Spruce Beetle (Coleoptera: Curculionidae). Environmental Entomology, 2018, 47, 1293-1299.	1.4	5
16	Single-generation effects on terpenoid defenses in lodgepole pine populations following mountain pine beetle infestation. PLoS ONE, 2018, 13, e0196063.	2.5	4
17	DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia. PeerJ, 2018, 6, e4221.	2.0	1
18	Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, <i>Dendroctonus ponderosae</i> Hopkins (Coleoptera: Curculionidae), larvae. PeerJ, 2017, 5, e3284.	2.0	37

DEZENE P W HUBER

#	Article	IF	CITATIONS
19	The Proteomics and Transcriptomics of Early Host Colonization and Overwintering Physiology in the Mountain Pine Beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Advances in Insect Physiology, 2016, 50, 101-128.	2.7	9
20	Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development. PeerJ, 2016, 4, e2109.	2.0	23
21	Effect of natal and colonised host species on female host acceptance and male joining behaviour of the mountain pine beetle (Coleoptera: Curculionidae) using pine and spruce. Canadian Entomologist, 2015, 147, 39-45.	0.8	5
22	How the Mountain Pine Beetle (Dendroctonus ponderosae) Breached the Canadian Rocky Mountains. Molecular Biology and Evolution, 2014, 31, 1803-1815.	8.9	70
23	An Inexpensive Feeding Bioassay Technique for Stored-Product Insects. Journal of Economic Entomology, 2014, 107, 455-461.	1.8	3
24	Proteomics Indicators of the Rapidly Shifting Physiology from Whole Mountain Pine Beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), Adults during Early Host Colonization. PLoS ONE, 2014, 9, e110673.	2.5	30
25	Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, <i>Dendroctonus ponderosae</i> (Coleoptera: Curculionidae). PeerJ, 2014, 2, e240.	2.0	49
26	Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biology, 2013, 14, R27.	9.6	260
27	Comparisons of mountain pine beetle (<i>Dendroctonus ponderosae</i> Hopkins) reproduction within a novel and traditional host: effects of insect natal history, colonized host species and competitors. Agricultural and Forest Entomology, 2013, 15, 310-320.	1.3	14
28	Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation. Genome, 2013, 56, 505-510.	2.0	27
29	Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms. PLoS ONE, 2013, 8, e77777.	2.5	57
30	Responses of Dendroctonus brevicomis (Coleoptera: Curculionidae) in Behavioral Assays: Implications to Development of a Semiochemical-Based Tool for Tree Protection. Journal of Economic Entomology, 2012, 105, 149-160.	1.8	22
31	The Legacy of Attack: Implications of High Phloem Resin Monoterpene Levels in Lodgepole Pines Following Mass Attack by Mountain Pine Beetle, <i>Dendroctonus ponderosae</i> Hopkins. Environmental Entomology, 2012, 41, 392-398.	1.4	32
32	Efficacy of "Verbenone Plus―for Protecting Ponderosa Pine Trees and Stands From <l>Dendroctonus brevicomis</l> (Coleoptera: Curculionidae) Attack in British Columbia and California. Journal of Economic Entomology, 2012, 105, 1668-1680.	1.8	21
33	Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochemistry and Molecular Biology, 2012, 42, 525-536.	2.7	93
34	Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Insect Biochemistry and Molecular Biology, 2012, 42, 890-901.	2.7	61
35	Genetic Variation of Lodgepole Pine, Pinus contorta var. latifolia, Chemical and Physical Defenses that Affect Mountain Pine Beetle, Dendroctonus ponderosae, Attack and Tree Mortality. Journal of Chemical Ecology, 2011, 37, 1002-1012.	1.8	44
36	Ecosystem, Location, and Climate Effects on Foliar Secondary Metabolites of Lodgepole Pine Populations from Central British Columbia. Journal of Chemical Ecology, 2011, 37, 607-621.	1.8	22

DEZENE P W HUBER

#	Article	IF	CITATIONS
37	10.1023/A:1018979916210.,2011,,.		9
38	Differences in the constitutive terpene profile of lodgepole pine across a geographical range in British Columbia, and correlation with historical attack by mountain pine beetle. Canadian Entomologist, 2010, 142, 557-573.	0.8	46
39	Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Canadian Journal of Forest Research, 2010, 40, 2333-2344.	1.7	38
40	Response of <i>Dendroctonus brevicomis</i> to different release rates of nonhost angiosperm volatiles and verbenone in trapping and tree protection studies. Journal of Applied Entomology, 2009, 133, 143-154.	1.8	32
41	Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce <i>Picea engelmannii</i> × <i>glauca</i> by mountain pine beetle <i>Dendroctonus ponderosae</i> . Agricultural and Forest Entomology, 2009, 11, 83-89.	1.3	30
42	Protection of spruce from colonization by the bark beetle, Ips perturbatus, in Alaska. Forest Ecology and Management, 2008, 256, 1825-1839.	3.2	39
43	Nonhost Angiosperm Volatiles and Verbenone Protect Individual Ponderosa Pines from Attack by Western Pine Beetle and Red Turpentine Beetle (Coleoptera: Curculionidae, Scolytinae). Western Journal of Applied Forestry, 2008, 23, 40-45.	0.5	19
44	Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa. Insect Molecular Biology, 2007, 16, 335-349.	2.0	44
45	Antennal responses of the western pine beetle, Dendroctonus brevicomis (Coleoptera:) Tj ETQq1 1 0.784314 rgB angiosperms and conifers. Chemoecology, 2007, 17, 209-221.	T /Overloc 1.1	k 10 Tf 50 4 35
46	Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences. Molecular Ecology, 2006, 15, 1275-1297.	3.9	183
47	Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews, 2006, 5, 143-178.	6.5	233
48	The Role of Terpene Synthases in the Direct and Indirect Defense of Conifers Against Insect Herbivory and Fungal Pathogens. , 2006, , 296-313.		8
49	Nonhost Angiosperm Volatiles and Verbenone Disrupt Response of Western Pine Beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae), to Attractant-Baited Traps. Journal of Economic Entomology, 2005, 98, 2041-2048.	1.8	24
50	Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry, 2005, 66, 1427-1439.	2.9	70
51	Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiology, 2005, 25, 1075-1083.	3.1	77
52	Nonhost Angiosperm Volatiles and Verbenone Disrupt Response of Western Pine Beetle, <i>Dendroctonus brevicomis</i> (Coleoptera: Scolytidae), to Attractant-Baited Traps. Journal of Economic Entomology, 2005, 98, 2041-2048.	1.8	13
53	Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (â^')-germacr. Plant Journal, 2004, 37, 603-616.	5.7	220
54	GENOMIC HARDWIRING AND PHENOTYPIC PLASTICITY OF TERPENOID-BASED DEFENSES IN CONIFERS. Journal of Chemical Ecology, 2004, 30, 2399-2418.	1.8	73

#	Article	IF	CITATIONS
55	Comparative Behavioural Responses ofDryocoetes confususSwaine,Dendroctonus rufipennis(Kirby), andDendroctonus ponderosaeHopkins (Coleoptera: Scolytidae) to Angiosperm Tree Bark Volatiles. Environmental Entomology, 2003, 32, 742-751.	1.4	14
56	Protection of lodgepole pine from attack by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) using high doses of verbenone in combination with nonhost bark volatiles. Forestry Chronicle, 2003, 79, 685-691.	0.6	47
57	Protection of lodgepole pines from mass attack by mountain pine beetle,Dendroctonus ponderosae, with nonhost angiosperm volatiles and verbenone. Entomologia Experimentalis Et Applicata, 2001, 99, 131-141.	1.4	51
58	Response of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), to conophthorin and other angiosperm bark volatiles in the avoidance of non-hosts. Agricultural and Forest Entomology, 2001, 3, 225-232.	1.3	44
59	Angiosperm bark volatiles disrupt response of Douglas-fir beetle, Dendroctonus pseudotsugae, to attractant-baited traps. , 2001, 27, 217-233.		57
60	A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera:) Tj ETQq0 0 0 rgBT /	Overlock 1	.0 ₈ 7 50 542

61	DIFFERENTIAL BIOACTIVITY OF CONOPHTHORIN ON FOUR SPECIES OF NORTH AMERICAN BARK BEETLES (COLEOPTERA: SCOLYTIDAE). Canadian Entomologist, 2000, 132, 649-653.	0.8	31
62	Two Pheromones of Coniferophagous Bark Beetles Found in the Bark of Nonhost Angiosperms. Journal of Chemical Ecology, 1999, 25, 805-816.	1.8	71
63	Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Applied and Environmental Microbiology, 1995, 61, 290-296.	3.1	135