Shu-Chun Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5502705/publications.pdf Version: 2024-02-01

SHILCHUN TENC

#	Article	IF	CITATIONS
1	Bone Marrow Histology in Hemophagocytic Lymphohistiocytosis. Archives of Pathology and Laboratory Medicine, 2023, 147, 348-358.	2.5	2
2	Nuclear envelope tethering inhibits the formation of ALT-associated PML bodies in ALT cells. Aging, 2021, 13, 10490-10516.	3.1	8
3	Clinical and functional characterization of a novel STUB1 frameshift mutation in autosomal dominant spinocerebellar ataxia type 48 (SCA48). Journal of Biomedical Science, 2021, 28, 65.	7.0	6
4	A Clinicopathological Study of Cytomegalovirus Lymphadenitis and Tonsillitis and Their Association with Epstein–Barr Virus. Infectious Diseases and Therapy, 2021, 10, 2661-2675.	4.0	4
5	An HSP90 cochaperone Ids2 maintains the stability of mitochondrial DNA and ATP synthase. BMC Biology, 2021, 19, 242.	3.8	3
6	Selected ellipticine derivatives, known to target topoisomerase II, suppress the alternative lengthening of telomere (ALT) pathway in telomerase–negative cells. Journal of Cancer Research and Clinical Oncology, 2020, 146, 1671-1676.	2.5	3
7	Stress-induced p53 drives BAG5 cochaperone expression to control α-synuclein aggregation in Parkinson's disease. Aging, 2020, 12, 20702-20727.	3.1	12
8	Glucose intake hampers PKA-regulated HSP90 chaperone activity. ELife, 2018, 7, .	6.0	16
9	SMYD3 Promotes Homologous Recombination via Regulation of H3K4-mediated Gene Expression. Scientific Reports, 2017, 7, 3842.	3.3	23
10	Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Research, 2017, 45, 8314-8328.	14.5	10
11	PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Research, 2017, 45, 10492-10503.	14.5	42
12	Yeast Cip1 is activated by environmental stress to inhibit Cdk1–G1 cyclins via Mcm1 and Msn2/4. Nature Communications, 2017, 8, 56.	12.8	30
13	Genistein suppresses the proliferation of telomeraseâ€negative cells. Food Science and Nutrition, 2017, 5, 197-204.	3.4	5
14	K63-polyubiquitinated HAUSP deubiquitinates HIF- $1\hat{l}\pm$ and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nature Communications, 2016, 7, 13644.	12.8	99
15	miR-1236 regulates hypoxia-induced epithelial–mesenchymal transition and cell migration/invasion through repressing SENP1 and HDAC3. Cancer Letters, 2016, 378, 59-67.	7.2	44
16	SMYD3-Mediated H2A.Z.1 Methylation Promotes Cell Cycle and Cancer Proliferation. Cancer Research, 2016, 76, 6043-6053.	0.9	48
17	Acquisition of tumorigenic potential and enhancement of angiogenesis in pulmonary stem/progenitor cells through Oct-4 hyperexpression. Oncotarget, 2016, 7, 13917-13931.	1.8	13
18	Nijmegen breakage syndrome protein 1 (NBS1) modulates hypoxia inducible factor-1α (HIF-1α) stability and promotes in vitro migration and invasion under ionizing radiation. International Journal of Biochemistry and Cell Biology, 2015, 64, 229-238.	2.8	10

Shu-Chun Teng

#	Article	IF	CITATIONS
19	Topoisomerase II inhibition suppresses the proliferation of telomerase-negative cancers. Cellular and Molecular Life Sciences, 2015, 72, 1825-1837.	5.4	10
20	Instability of Succinate Dehydrogenase in SDHD Polymorphism Connects Reactive Oxygen Species Production to Nuclear and Mitochondrial Genomic Mutations in Yeast. Antioxidants and Redox Signaling, 2015, 22, 587-602.	5.4	9
21	Global Analysis of Cdc14 Dephosphorylation Sites Reveals Essential Regulatory Role in Mitosis and Cytokinesis. Molecular and Cellular Proteomics, 2014, 13, 594-605.	3.8	25
22	PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nature Communications, 2014, 5, 5312.	12.8	24
23	TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biology, 2014, 15, 513.	8.8	125
24	DNA Topoisomerase III Alpha Regulates p53-Mediated Tumor Suppression. Clinical Cancer Research, 2014, 20, 1489-1501.	7.0	10
25	Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nature Communications, 2014, 5, 4697.	12.8	74
26	Cellular Protein HAX1 Interacts with the Influenza A Virus PA Polymerase Subunit and Impedes Its Nuclear Translocation. Journal of Virology, 2013, 87, 110-123.	3.4	45
27	Interaction between NBS1 and the mTOR/Rictor/SIN1 Complex through Specific Domains. PLoS ONE, 2013, 8, e65586.	2.5	10
28	Epigenetic reprogramming and post-transcriptional regulation during the epithelial–mesenchymal transition. Trends in Genetics, 2012, 28, 454-463.	6.7	140
29	Interplay between HDAC3 and WDR5 Is Essential for Hypoxia-Induced Epithelial-Mesenchymal Transition. Molecular Cell, 2011, 43, 811-822.	9.7	233
30	Krüppel-Like Transcription Factor 4 Contributes to Maintenance of Telomerase Activity in Stem Cells. Stem Cells, 2010, 28, 1510-1517.	3.2	71
31	Sumoylation of the BLM ortholog, Sgs1, promotes telomere–telomere recombination in budding yeast. Nucleic Acids Research, 2010, 38, 488-498.	14.5	86
32	Intragenic transcription of a noncoding RNA modulates expression of <i>ASP3</i> in budding yeast. Rna, 2010, 16, 2085-2093.	3.5	12
33	Direct interaction between Utp8p and Utp9p contributes to rRNA processing in budding yeast. Biochemical and Biophysical Research Communications, 2010, 393, 297-302.	2.1	5
34	Recruitment of Rad51 and Rad52 to Short Telomeres Triggers a Mec1-Mediated Hypersensitivity to Double-Stranded DNA Breaks in Senescent Budding Yeast. PLoS ONE, 2009, 4, e8224.	2.5	10
35	Epstein-Barr Virus BGLF4 Kinase Suppresses the Interferon Regulatory Factor 3 Signaling Pathway. Journal of Virology, 2009, 83, 1856-1869.	3.4	130
36	Interaction between HSP60 and \hat{l}^2 -catenin promotes metastasis. Carcinogenesis, 2009, 30, 1049-1057.	2.8	99

Shu-Chun Teng

#	Article	IF	CITATIONS
37	Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13. Nucleic Acids Research, 2009, 37, 3602-3611.	14.5	35
38	Phosphorylation of Telomeric Repeat Binding Factor 1 (TRF1) by Akt Causes Telomere Shortening. Cancer Investigation, 2009, 27, 24-28.	1.3	13
39	Activation of phosphoinositide 3-kinase by the NBS1 DNA repair protein through a novel activation motif. Journal of Molecular Medicine, 2008, 86, 401-412.	3.9	22
40	Determination of the differential estrogenicity of isoflavonoids by E2–ER–ERE-dependent gene expression in recombinant yeast and MCF-7 human breast cancer cells. Food Chemistry, 2008, 108, 719-726.	8.2	17
41	Direct regulation of TWIST by HIF-1α promotes metastasis. Nature Cell Biology, 2008, 10, 295-305.	10.3	1,187
42	Direct regulation of <i>HSP60</i> expression by câ€MYC induces transformation. FEBS Letters, 2008, 582, 4083-4088.	2.8	33
43	Proofreading Activity of DNA Polymerase Pol2 Mediates 3′-End Processing during Nonhomologous End Joining in Yeast. PLoS Genetics, 2008, 4, e1000060.	3.5	23
44	Overexpression of NBS1 induces epithelial–mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene, 2007, 26, 1459-1467.	5.9	138
45	ShyA, a membrane protein for proper septation of hyphae in Streptomyces. Biochemical and Biophysical Research Communications, 2006, 343, 369-377.	2.1	1
46	Telomere configuration influences the choice of telomere maintenance pathways. Biochemical and Biophysical Research Communications, 2006, 343, 459-466.	2.1	2
47	Importin KPNA2, NBS1, DNA Repair and Tumorigenesis. Journal of Molecular Histology, 2006, 37, 293-299.	2.2	47
48	The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Research, 2006, 34, 6327-6336.	14.5	106
49	Increased NBS1 Expression Is a Marker of Aggressive Head and Neck Cancer and Overexpression of NBS1 Contributes to Transformation. Clinical Cancer Research, 2006, 12, 507-515.	7.0	73
50	Involvement of Topoisomerase III in Telomere-Telomere Recombination. Journal of Biological Chemistry, 2006, 281, 13717-13723.	3.4	40
51	Inhibition of estradiol-induced mammary proliferation by dibenzoylmethane through the E 2 –ER–ERE-dependent pathway. Carcinogenesis, 2005, 27, 131-136.	2.8	30
52	Importin KPNA2 Is Required for Proper Nuclear Localization and Multiple Functions of NBS1. Journal of Biological Chemistry, 2005, 280, 39594-39600.	3.4	86
53	Overexpression of NBS1 Contributes to Transformation through the Activation of Phosphatidylinositol 3-Kinase/Akt. Journal of Biological Chemistry, 2005, 280, 32505-32511.	3.4	59
54	Extrachromosomal Telomeric Circles Contribute to Rad52-, Rad50-, and Polymerase δ-Mediated Telomere-Telomere Recombination in <i>Saccharomyces cerevisiae</i> . Eukaryotic Cell, 2005, 4, 327-336.	3.4	42

SHU-CHUN TENG

#	Article	IF	CITATIONS
55	Direct Activation of HSP90A Transcription by c-Myc Contributes to c-Myc-induced Transformation. Journal of Biological Chemistry, 2004, 279, 14649-14655.	3.4	54
56	c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair. Vol. 278 (2003) 19286-19291. Journal of Biological Chemistry, 2004, 279, 16894.	3.4	0
57	c-Myc Directly Regulates the Transcription of the NBS1 Gene Involved in DNA Double-strand Break Repair. Journal of Biological Chemistry, 2003, 278, 19286-19291.	3.4	70
58	Involvement of Replicative Polymerases, Tel1p, Mec1p, Cdc13p, and the Ku Complex in Telomere-Telomere Recombination. Molecular and Cellular Biology, 2002, 22, 5679-5687.	2.3	52
59	Induction of Global Stress Response in Saccharomyces cerevisiae Cells Lacking Telomerase. Biochemical and Biophysical Research Communications, 2002, 291, 714-721.	2.1	16
60	Est1p As a Cell Cycle-Regulated Activator of Telomere-Bound Telomerase. Science, 2002, 297, 1023-1026.	12.6	323
61	Telomerase-Independent Lengthening of Yeast Telomeres Occurs by an Abrupt Rad50p-Dependent, Rif-Inhibited Recombinational Process. Molecular Cell, 2000, 6, 947-952.	9.7	248
62	Pif1p Helicase, a Catalytic Inhibitor of Telomerase in Yeast. Science, 2000, 289, 771-774.	12.6	216
63	Telomere-Telomere Recombination Is an Efficient Bypass Pathway for Telomere Maintenance in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 8083-8093.	2.3	428
64	DNA repair by recycling reverse transcripts. Nature, 1997, 386, 31-32.	27.8	1
65	DNA repair by recycling reverse transcripts. Nature, 1997, 386, 32-32.	27.8	2
66	Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature, 1996, 383, 641-644.	27.8	243
67	A new non-LTR retrotransposon porvides evidence for multiple distinct site-specific elements inCrithidia faciculataminiexon arrays. Nucleic Acids Research, 1995, 23, 2929-2936.	14.5	23
68	An HSP90 Cochaperone Ids2 Maintains the Stability of Mitochondrial DNA and ATP Synthase. SSRN Electronic Journal, 0, , .	0.4	0