Il-Doo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55022/publications.pdf Version: 2024-02-01

219	11,628	¹⁹⁶⁵⁷ 61	³⁴⁹⁸⁶ 98
papers	citations	h-index	g-index
232 all docs	232 docs citations	232 times ranked	13277 citing authors

#	Article	IF	CITATIONS
1	Towards Watt-scale hydroelectric energy harvesting by Ti ₃ C ₂ T _{<i>x</i>} -based transpiration-driven electrokinetic power generators. Energy and Environmental Science, 2022, 15, 123-135.	30.8	70
2	Sacrificial Templateâ€Assisted Synthesis of Inorganic Nanosheets with Highâ€Loading Singleâ€Atom Catalysts: A General Approach. Advanced Functional Materials, 2022, 32, 2110485.	14.9	18
3	Largeâ€Area Synthesis of Ultrathin, Flexible, and Transparent Conductive Metal–Organic Framework Thin Films via a Microfluidicâ€Based Solution Shearing Process. Advanced Materials, 2022, 34, e2107696.	21.0	27
4	Oxide/ZIFâ€8 Hybrid Nanofiber Yarns: Heightened Surface Activity for Exceptional Chemiresistive Sensing. Advanced Materials, 2022, 34, e2105869.	21.0	29
5	Ion-permselective conducting polymer-based electrokinetic generators with maximized utility of green water. Nano Energy, 2022, 94, 106946.	16.0	19
6	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments. Advanced Materials, 2022, 34, e2108900.	21.0	19
7	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	0
8	Highâ€Performance, Flexible NO ₂ Chemiresistors Achieved by Design of Imineâ€Incorporated nâ€Type Conjugated Polymers. Advanced Science, 2022, 9, e2200270.	11.2	28
9	Largeâ€Area Synthesis of Ultrathin, Flexible, and Transparent Conductive Metal–Organic Framework Thin Films via a Microfluidicâ€Based Solution Shearing Process (Adv. Mater. 12/2022). Advanced Materials, 2022, 34, .	21.0	0
10	Porous Nanofiber Membrane: Rational Platform for Highly Sensitive Thermochromic Sensor. Advanced Functional Materials, 2022, 32, .	14.9	27
11	Photoenergy Harvesting by Photoacid Solution. Advanced Materials, 2022, 34, e2201734.	21.0	6
12	Violacein-embedded nanofiber filters with antiviral and antibacterial activities. Chemical Engineering Journal, 2022, 444, 136460.	12.7	19
13	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	21.0	4
14	Investigation of Ordering on Oxygenâ€Deficient LiNi _{0.5} Mn _{1.5} O _{4â€Î´} Thin Films for Boosting Electrochemical Performance in Allâ€Solidâ€State Thinâ€Film Batteries. Small, 2022, , 2201134.	10.0	3
15	Promoting Exâ€Solution from Metal–Organicâ€Frameworkâ€Mediated Oxide Scaffolds for Highly Active and Robust Catalysts. Advanced Materials, 2022, 34, e2201109.	21.0	9
16	An angstrom-level d-spacing control of graphite oxide using organofillers for high-rate lithium storage. CheM, 2022, 8, 2393-2409.	11.7	27
17	Delayed Infiltration of Peripheral Monocyte Contributes to Phagocytosis and Transneuronal Degeneration in Chronic Stroke. Stroke, 2022, 53, 2377-2388.	2.0	13
18	Microscopic Insight into Tin Nanoparticle Magnesiation. ACS Applied Energy Materials, 2022, 5, 7944-7949.	5.1	2

#	Article	IF	CITATIONS
19	Porous Pd–Sn Alloy Nanotube-Based Chemiresistor for Highly Stable and Sensitive H ₂ Detection. ACS Applied Materials & Interfaces, 2022, 14, 28378-28388.	8.0	11
20	Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. ACS Nano, 2022, 16, 9762-9771.	14.6	17
21	Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS Nano, 2021, 15, 288-308.	14.6	45
22	3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy and Environmental Science, 2021, 14, 5894-5902.	30.8	26
23	Unravelling high volumetric capacity of Co ₃ O ₄ nanograin-interconnected secondary particles for lithium-ion battery anodes. Journal of Materials Chemistry A, 2021, 9, 6242-6251.	10.3	18
24	Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration. ACS Nano, 2021, 15, 3971-3995.	14.6	36
25	Ensemble Design of Electrode–Electrolyte Interfaces: Toward High-Performance Thin-Film All-Solid-State Li–Metal Batteries. ACS Nano, 2021, 15, 4561-4575.	14.6	38
26	Celebrating 50 Years of KAIST: Collective Intelligence and Innovation for Confronting Contemporary Issues. ACS Nano, 2021, 15, 1895-1907.	14.6	1
27	Polyelemental Nanoparticles as Catalysts for a Li–O ₂ Battery. ACS Nano, 2021, 15, 4235-4244.	14.6	38
28	Straightforward strategy toward a shape-deformable carbon-free cathode for flexible Li–air batteries in ambient air. Nano Energy, 2021, 83, 105821.	16.0	12
29	Pyrolysis of Enzymolysisâ€īreated Wood: Hierarchically Assembled Porous Carbon Electrode for Advanced Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2101077.	14.9	109
30	Surface Activity-Tuned Metal Oxide Chemiresistor: Toward Direct and Quantitative Halitosis Diagnosis. ACS Nano, 2021, 15, 14207-14217.	14.6	74
31	Hierarchically Assembled Cobalt Oxynitride Nanorods and N-Doped Carbon Nanofibers for Efficient Bifunctional Oxygen Electrocatalysis with Exceptional Regenerative Efficiency. ACS Nano, 2021, 15, 11218-11230.	14.6	45
32	Woodâ€Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. Small, 2021, 17, e2102532.	10.0	49
33	Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nature Communications, 2021, 12, 4294.	12.8	36
34	Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal–Organic Frameworks via Site‧pecific Nucleation. Advanced Materials, 2021, 33, e2101216.	21.0	23
35	Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal–Organic Frameworks via Siteâ€6pecific Nucleation (Adv. Mater. 38/2021). Advanced Materials, 2021, 33, 2170302.	21.0	3
36	Synergistic Integration of Chemoâ€Resistive and SERS Sensing for Labelâ€Free Multiplex Gas Detection. Advanced Materials, 2021, 33, e2105199.	21.0	25

#	Article	IF	CITATIONS
37	Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy and Environmental Science, 2021, 14, 4228-4267.	30.8	100
38	Synergistic Interactions of Different Electroactive Components for Superior Lithium Storage Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 587-596.	8.0	13
39	Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS Nano, 2021, 15, 81-110.	14.6	95
40	Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. Nanomaterials, 2021, 11, 2691.	4.1	10
41	Synergistic Integration of Chemoâ€Resistive and SERS Sensing for Labelâ€Free Multiplex Gas Detection (Adv. Mater. 44/2021). Advanced Materials, 2021, 33, 2170350.	21.0	1
42	Non-Equilibrium Sodiation Pathway of CuSbS ₂ . ACS Nano, 2021, 15, 17472-17479.	14.6	5
43	Rational design approaches of two-dimensional metal oxides for chemiresistive gas sensors: A comprehensive review. MRS Bulletin, 2021, 46, 1080-1094.	3.5	6
44	A Critical Review on Functionalization of Air athodes for Nonaqueous Li–O ₂ Batteries. Advanced Functional Materials, 2020, 30, 1808303.	14.9	132
45	Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy and Environmental Science, 2020, 13, 527-534.	30.8	122
46	Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. Springer Series in Emerging Cultural Perspectives in Work, Organizational, and Personnel Studies, 2020, 57, 24-39.	1.5	58
47	Tree Gum–Graphene Oxide Nanocomposite Films as Gas Barriers. ACS Applied Nano Materials, 2020, 3, 633-640.	5.0	33
48	Stable and High-Capacity Si Electrodes with Free-Standing Architecture for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 208-217.	5.1	9
49	Pore-Size-Tuned Graphene Oxide Membrane as a Selective Molecular Sieving Layer: Toward Ultraselective Chemiresistors. Analytical Chemistry, 2020, 92, 957-965.	6.5	38
50	Dopantâ€Driven Positive Reinforcement in Ex‣olution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials. Advanced Materials, 2020, 32, e2003983.	21.0	26
51	Catalytic Materials: Dopantâ€Driven Positive Reinforcement in Exâ€Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials (Adv. Mater. 46/2020). Advanced Materials, 2020, 32, 2070342.	21.0	1
52	Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle Li–Oxygen Batteries. ACS Applied Materials & Interfaces, 2020, 12, 55756-55765.	8.0	16
53	Colorimetric Dye-Loaded Nanofiber Yarn: Eye-Readable and Weavable Gas Sensing Platform. ACS Nano, 2020, 14, 16907-16918.	14.6	74
54	2D Materials Decorated with Ultrathin and Porous Graphene Oxide for High Stability and Selective Surface Activity. Advanced Materials, 2020, 32, e2002723.	21.0	33

#	Article	IF	CITATIONS
55	Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges. ACS Nano, 2020, 14, 14284-14322.	14.6	143
56	Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano, 2020, 14, 12313-12340.	14.6	252
57	An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications. Journal of Materials Chemistry A, 2020, 8, 20436-20445.	10.3	48
58	Focused Electric-Field Polymer Writing: Toward Ultralarge, Multistimuli-Responsive Membranes. ACS Nano, 2020, 14, 12173-12183.	14.6	18
59	Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support <i>via</i> Carbon Nitride/SnO ₂ Heterojunction Trapping. ACS Nano, 2020, 14, 11394-11405.	14.6	98
60	Lithium–Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 2020, 14, 14549-14578.	14.6	126
61	The Design and Science of Polyelemental Nanoparticles. ACS Nano, 2020, 14, 6407-6413.	14.6	53
62	High-density Fibrous Polyimide Sponges with Superior Mechanical and Thermal Properties. ACS Applied Materials & Interfaces, 2020, 12, 19006-19014.	8.0	92
63	Ultralight, Structurally Stable Electrospun Sponges with Tailored Hydrophilicity as a Novel Material Platform. ACS Applied Materials & Interfaces, 2020, 12, 18002-18011.	8.0	21
64	Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydrate Polymers, 2020, 247, 116705.	10.2	39
65	Multifunctional Inorganic Nanomaterial Aerogel Assembled into fSWNT Hydrogel Platform for Ultraselective NO ₂ Sensing. ACS Applied Materials & Interfaces, 2020, 12, 10637-10647.	8.0	10
66	Recycling non-food-grade tree gum wastes into nanoporous carbon for sustainable energy harvesting. Green Chemistry, 2020, 22, 1198-1208.	9.0	33
67	Lowâ€Thermalâ€Budget Doping: Lowâ€Thermalâ€Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boronâ€Doped Reduced Graphene Oxide (Adv. Sci. 7/2020). Advanced Science, 2020, 7, 2070039.	11.2	0
68	Carbon anchored conducting polymer composite linkage for high performance water energy harvesters. Nano Energy, 2020, 74, 104827.	16.0	13
69	Design of Hollow Nanofibrous Structures using Electrospinning: An Aspect of Chemical Sensor Applications. ChemNanoMat, 2020, 6, 1014-1027.	2.8	16
70	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1
71	Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application. Advanced Functional Materials, 2019, 29, 1903012.	14.9	41
72	Janus Graphene Liquid Crystalline Fiber with Tunable Properties Enabled by Ultrafast Flash Reduction. Small, 2019, 15, e1901529.	10.0	27

#	Article	IF	CITATIONS
73	Transpiration Driven Electrokinetic Power Generator. ACS Nano, 2019, 13, 12703-12709.	14.6	134
74	Gallium Nitride Nanoparticles Embedded in a Carbon Nanofiber Anode for Ultralong-Cycle-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 44263-44269.	8.0	19
75	Chemiresistors: Catalytic Metal Nanoparticles Embedded in Conductive Metal–Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials (Adv. Sci. 21/2019). Advanced Science, 2019, 6, 1970126.	11.2	3
76	2D Oxide Sensors: Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application (Adv. Funct. Mater. 42/2019). Advanced Functional Materials, 2019, 29, 1970290.	14.9	0
77	CuFeO ₂ –NiFe ₂ O ₄ hybrid electrode for lithium-ion batteries with ultra-stable electrochemical performance. RSC Advances, 2019, 9, 27257-27263.	3.6	11
78	A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms. Nanoscale Advances, 2019, 1, 3948-3956.	4.6	1
79	Highly efficient and stable solid-state Li–O ₂ batteries using a perovskite solid electrolyte. Journal of Materials Chemistry A, 2019, 7, 3150-3160.	10.3	43
80	Nitrogenâ€Dopantâ€Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902489.	14.9	18
81	A General Synthesis of Crumpled Metal Oxide Nanosheets as Superior Chemiresistive Sensing Layers. Advanced Functional Materials, 2019, 29, 1903128.	14.9	61
82	Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution. Nature Communications, 2019, 10, 2364.	12.8	44
83	Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved quantum dots light emitting diodes. RSC Advances, 2019, 9, 15177-15183.	3.6	6
84	Nanoscience and Nanotechnology at the Korea Advanced Institute of Science and Technology. ACS Nano, 2019, 13, 3741-3745.	14.6	6
85	Musselâ€Inspired Polydopamineâ€Treated Reinforced Composite Membranes with Selfâ€Supported CeO <i>_x</i> Radical Scavengers for Highly Stable PEM Fuel Cells. Advanced Functional Materials, 2019, 29, 1806929.	14.9	66
86	Graphene Liquid Cell Electron Microscopy of Initial Lithiation in Co ₃ O ₄ Nanoparticles. ACS Omega, 2019, 4, 6784-6788.	3.5	11
87	Unveiling the Origin of Superior Electrochemical Performance in Polycrystalline Dense SnO ₂ Nanospheres as Anodes for Lithium-ion Batteries. ACS Applied Energy Materials, 2019, 2, 2004-2012.	5.1	14
88	Heterogeneous Metal Oxide–Graphene Thorn-Bush Single Fiber as a Freestanding Chemiresistor. ACS Applied Materials & Interfaces, 2019, 11, 10208-10217.	8.0	27
89	Preparation of Graphene Liquid Cells for the Observation of Lithium-ion Battery Material. Journal of Visualized Experiments, 2019, , .	0.3	3
90	Effect of annealing temperature on the interfacial interaction of LiNi0.5Mn1.5O4 thin film cathode with stainless-steel substrate. Journal of Electroceramics, 2019, 42, 104-112.	2.0	7

#	Article	IF	CITATIONS
91	High-rate formation cycle of Co3O4 nanoparticle for superior electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2019, 295, 7-13.	5.2	32
92	Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electronic Materials Letters, 2018, 14, 221-260.	2.2	197
93	Metal nanotrough embedded colorless polyimide films: transparent conducting electrodes with exceptional flexibility and high conductivity. Nanoscale, 2018, 10, 7927-7932.	5.6	12
94	Mulberry Paperâ€Based Supercapacitor Exhibiting High Mechanical and Chemical Toughness for Largeâ€Scale Energy Storage Applications. Advanced Energy Materials, 2018, 8, 1800064.	19.5	53
95	Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries. Nano Energy, 2018, 46, 193-202.	16.0	58
96	Nitrogenâ€Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor. Small, 2018, 14, e1703934.	10.0	105
97	Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe ₂ O ₃ Nanoparticles for High-Performance Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 6531-6540.	8.0	55
98	Nanoscale PtO ₂ Catalysts-Loaded SnO ₂ Multichannel Nanofibers toward Highly Sensitive Acetone Sensor. ACS Applied Materials & Interfaces, 2018, 10, 2016-2025.	8.0	96
99	Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method. Journal of Materials Chemistry A, 2018, 6, 2834-2846.	10.3	31
100	Facile Synthesis of Pt-Functionalized Meso/Macroporous SnO ₂ Hollow Spheres through in Situ Templating with SiO ₂ for H ₂ S Sensors. ACS Applied Materials & Interfaces, 2018, 10, 18183-18191.	8.0	79
101	Material-Independent Nanotransfer onto a Flexible Substrate Using Mechanical-Interlocking Structure. ACS Nano, 2018, 12, 4387-4397.	14.6	21
102	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O ₂ Batteries. ACS Nano, 2018, 12, 128-139.	14.6	230
103	In Situ TEM Observation on the Growth of Solid Electrolyte Interphase (SEI) Layer on Co3O4 upon Sodiation and Magnesiation using Graphene Liquid Cell. Microscopy and Microanalysis, 2018, 24, 300-301.	0.4	1
104	In situ Transmission Electron Microscopy of Lithiation Dynamics in a SnCh Hollow Nanosphere. Microscopy and Microanalysis, 2018, 24, 1944-1945.	0.4	0
105	2D Nanopatterning: 2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography (Adv. Funct.) Tj ETQ	q110,784 14.9	4314 rgBT /0
106	Wireless Real-Time Temperature Monitoring of Blood Packages: Silver Nanowire-Embedded Flexible Temperature Sensors. ACS Applied Materials & Interfaces, 2018, 10, 44678-44685.	8.0	58
107	Pt-Functionalized PdO Nanowires for Room Temperature Hydrogen Gas Sensors. ACS Sensors, 2018, 3, 2152-2158.	7.8	70
108	High-Power Aqueous Zinc-lon Batteries for Customized Electronic Devices. ACS Nano, 2018, 12, 11838-11846.	14.6	158

#	Article	IF	CITATIONS
109	Ultrastable Grapheneâ€Encapsulated 3 nm Nanoparticles by In Situ Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1805023.	21.0	24
110	2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography. Advanced Functional Materials, 2018, 28, 1804508.	14.9	41
111	Glassâ€Fabric Reinforced Ag Nanowire/Siloxane Composite Heater Substrate: Subâ€10 nm Metal@Metal Oxide Nanosheet for Sensitive Flexible Sensing Platform. Small, 2018, 14, e1802260.	10.0	17
112	Gas Sensors: Few‣ayered WS ₂ Nanoplates Confined in Co, Nâ€Doped Hollow Carbon Nanocages: Abundant WS ₂ Edges for Highly Sensitive Gas Sensors (Adv. Funct. Mater.) Tj ETQq0 0	0 ngBJT /O	verzłock 10 Tf
113	Sub-Parts-per-Million Hydrogen Sulfide Colorimetric Sensor: Lead Acetate Anchored Nanofibers toward Halitosis Diagnosis. Analytical Chemistry, 2018, 90, 8769-8775.	6.5	47
114	Hierarchical Metal–Organic Framework-Assembled Membrane Filter for Efficient Removal of Particulate Matter. ACS Applied Materials & Interfaces, 2018, 10, 19957-19963.	8.0	74
115	Bimodally Porous WO ₃ Microbelts Functionalized with Pt Catalysts for Selective H ₂ S Sensors. ACS Applied Materials & Interfaces, 2018, 10, 20643-20651.	8.0	87
116	Bioinspired Cocatalysts Decorated WO ₃ Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor. ACS Sensors, 2018, 3, 1164-1173.	7.8	36
117	In Situ Coupling of Multidimensional MOFs for Heterogeneous Metal-Oxide Architectures: Toward Sensitive Chemiresistors. ACS Central Science, 2018, 4, 929-937.	11.3	59
118	Stress-Tolerant Nanoporous Germanium Nanofibers for Long Cycle Life Lithium Storage with High Structural Stability. ACS Nano, 2018, 12, 8169-8176.	14.6	42
119	Fewâ€Layered WS ₂ Nanoplates Confined in Co, Nâ€Đoped Hollow Carbon Nanocages: Abundant WS ₂ Edges for Highly Sensitive Gas Sensors. Advanced Functional Materials, 2018, 28, 1802575.	14.9	93
120	An Impedance-Transduced Chemiresistor with a Porous Carbon Channel for Rapid, Nonenzymatic, Glucose Sensing. Analytical Chemistry, 2018, 90, 9338-9346.	6.5	13
121	Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors, 2018, 18, 103.	3.8	61
122	Perovskite La _{0.75} Sr _{0.25} Cr _{0.5} Mn _{0.5} O _{3â~´Î´} sensitized SnO ₂ fiber-in-tube scaffold: highly selective and sensitive formaldehyde sensing. Journal of Materials Chemistry A, 2018, 6, 10543-10551.	10.3	29
123	Synergistic Coupling of Metallic Cobalt Nitride Nanofibers and IrO _{<i>x</i>} Nanoparticle Catalysts for Stable Oxygen Evolution. Chemistry of Materials, 2018, 30, 5941-5950.	6.7	57
124	Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications. ACS Applied Materials & Interfaces, 2018, 10, 20540-20549.	8.0	46
125	Graphene oxide templating: facile synthesis of morphology engineered crumpled SnO ₂ nanofibers for superior chemiresistors. Journal of Materials Chemistry A, 2018, 6, 13825-13834.	10.3	28
126	Abnormal Optoelectric Properties of Two-Dimensional Protonic Ruthenium Oxide with a Hexagonal Structure. ACS Applied Materials & Interfaces, 2018, 10, 22661-22668.	8.0	7

#	Article	IF	CITATIONS
127	Nanoscale PdO Catalyst Functionalized Co ₃ O ₄ Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Applied Materials & Interfaces, 2017, 9, 8201-8210.	8.0	240
128	Fast, Scalable Synthesis of Micronized Ge ₃ N ₄ @C with a High Tap Density for Excellent Lithium Storage. Advanced Functional Materials, 2017, 27, 1605975.	14.9	47
129	Optically Sintered 2D RuO ₂ Nanosheets: Temperatureâ€Controlled NO ₂ Reaction. Advanced Functional Materials, 2017, 27, 1606026.	14.9	54
130	Metal–Organic Framework Templated Catalysts: Dual Sensitization of PdO–ZnO Composite on Hollow SnO ₂ Nanotubes for Selective Acetone Sensors. ACS Applied Materials & Interfaces, 2017, 9, 18069-18077.	8.0	173
131	Innovative Nanosensor for Disease Diagnosis. Accounts of Chemical Research, 2017, 50, 1587-1596.	15.6	202
132	Supercharging a MnO ₂ Nanowire: An Amine-Altered Morphology Retains Capacity at High Rates and Mass Loadings. Langmuir, 2017, 33, 9324-9332.	3.5	3
133	Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors. Macromolecular Materials and Engineering, 2017, 302, 1600569.	3.6	55
134	2D WS ₂ -edge functionalized multi-channel carbon nanofibers: effect of WS ₂ edge-abundant structure on room temperature NO ₂ sensing. Journal of Materials Chemistry A, 2017, 5, 8725-8732.	10.3	122
135	Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries. Scientific Reports, 2017, 7, 45105.	3.3	49
136	Formation of a Surficial Bifunctional Nanolayer on Nb ₂ O ₅ for Ultrastable Electrodes for Lithiumâ€lon Battery. Small, 2017, 13, 1603610.	10.0	74
137	Cu Microbelt Network Embedded in Colorless Polyimide Substrate: Flexible Heater Platform with High Optical Transparency and Superior Mechanical Stability. ACS Applied Materials & Interfaces, 2017, 9, 39650-39656.	8.0	29
138	MOF derived ZnCo ₂ O ₄ porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. Journal of Materials Chemistry A, 2017, 5, 22717-22725.	10.3	69
139	Metal–Organic Framework-Templated PdO-Co ₃ O ₄ Nanocubes Functionalized by SWCNTs: Improved NO ₂ Reaction Kinetics on Flexible Heating Film. ACS Applied Materials & Interfaces, 2017, 9, 40593-40603.	8.0	55
140	Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO ₂ Nanoparticles in Liquid Electrolyte. ACS Omega, 2017, 2, 6329-6336.	3.5	26
141	Ultrasmall titanium oxide/titanium oxynitride composite nanoparticle-embedded carbon nanofiber mats as high-capacity and free-standing electrodes for lithium sulfur batteries. RSC Advances, 2017, 7, 44804-44808.	3.6	11
142	How can nanotechnology be applied to sensors for breath analysis?. Nanomedicine, 2017, 12, 2695-2697.	3.3	4
143	Accelerating Palladium Nanowire H ₂ Sensors Using Engineered Nanofiltration. ACS Nano, 2017, 11, 9276-9285.	14.6	190
144	Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photocethodes for photocelectrochemical water splitting. Korean Journal of Chemical Engineering, 2017, 34, 3214-3219.	2.7	20

#	Article	IF	CITATIONS
145	Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors. ACS Applied Materials & Interfaces, 2017, 9, 24821-24829.	8.0	12
146	Mesoporous SnO ₂ Nanotubes via Electrospinning–Etching Route: Highly Sensitive and Selective Detection of H ₂ S Molecule. ACS Applied Materials & Interfaces, 2017, 9, 26304-26313.	8.0	95
147	Nanomechanical Encoding Method Using Enhanced Thermal Concentration on a Metallic Nanobridge. ACS Nano, 2017, 11, 7781-7789.	14.6	12
148	Exceptional Highâ€Performance of Ptâ€Based Bimetallic Catalysts for Exclusive Detection of Exhaled Biomarkers. Advanced Materials, 2017, 29, 1700737.	21.0	113
149	Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. Journal of the American Chemical Society, 2017, 139, 11868-11876.	13.7	136
150	Real Time Observation of Initial Conversion Reaction of Co3O4 Nanoparticles Using Graphene Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1968-1969.	0.4	0
151	<i>In Situ</i> High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO ₂ Nanotubes Under Lithiation. Microscopy and Microanalysis, 2017, 23, 1107-1115.	0.4	21
152	The Effect of Electron Beam Dosage in the Decomposition Behavior of Electrolytes Encapsulated Inside the Graphene Sheets Based on In Situ TEM Observation. Microscopy and Microanalysis, 2017, 23, 2052-2053.	0.4	1
153	In Situ TEM Observation on the Agglomeration of Nanoparticles in the Interface of SnO2. Microscopy and Microanalysis, 2017, 23, 2054-2055.	0.4	2
154	In Situ TEM Observation on the Growth and Agglomeration of Propylene Carbonate-based Electrolytes During Sodiation with Graphene Liquid Cell. Microscopy and Microanalysis, 2016, 22, 1362-1363.	0.4	1
155	In Situ TEM Study on the Growth Process of Amorphous Layer on SnO 2 Nanoparticle During Sodiation on Real Time Scale. Microscopy and Microanalysis, 2016, 22, 1366-1367.	0.4	1
156	WO ₃ Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates. Small, 2016, 12, 911-920.	10.0	76
157	Rational Design of Highly Porous SnO ₂ Nanotubes Functionalized with Biomimetic Nanocatalysts for Direct Observation of Simulated Diabetes. Advanced Functional Materials, 2016, 26, 4740-4748.	14.9	139
158	Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy, 2016, 25, 154-160.	16.0	63
159	Electrospun materials for solar energy conversion: innovations and trends. Journal of Materials Chemistry C, 2016, 4, 10173-10197.	5.5	37
160	Highly Conducting In ₂ O ₃ Nanowire Network with Passivating ZrO ₂ Thin Film for Solutionâ€Processed Field Effect Transistors. Advanced Electronic Materials, 2016, 2, 1600218.	5.1	21
161	Dimensional Effects of MoS ₂ Nanoplates Embedded in Carbon Nanofibers for Bifunctional Li and Na Insertion and Conversion Reactions. ACS Applied Materials & Interfaces, 2016, 8, 26758-26768.	8.0	62
162	Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Materials, 2016, 8, e315-e315.	7.9	90

#	Article	IF	CITATIONS
163	Recent Progress in 1D Air Electrode Nanomaterials for Enhancing the Performance of Nonaqueous Lithium–Oxygen Batteries. ChemNanoMat, 2016, 2, 616-634.	2.8	24
164	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries. ChemSusChem, 2016, 9, 2007-2007.	6.8	2
165	Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules. Scientific Reports, 2016, 6, 18731.	3.3	32
166	Silver Nanowire Embedded Colorless Polyimide Heater for Wearable Chemical Sensors: Improved Reversible Reaction Kinetics of Optically Reduced Graphene Oxide. Small, 2016, 12, 5826-5835.	10.0	65
167	Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO ₂ toward a Superior Chemical Sensor. Small, 2016, 12, 5989-5997.	10.0	61
168	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li–O ₂ Batteries. ChemSusChem, 2016, 9, 2080-2088.	6.8	39
169	A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO ₂ /NiO Nanotubes. ACS Nano, 2016, 10, 11317-11326.	14.6	177
170	Structural Integrity of SnO 2 Nanotubes During Sodiation Examined by in Situ TEM Observation with Graphene Liquid Cell. Microscopy and Microanalysis, 2016, 22, 1364-1365.	0.4	0
171	Case Examination on Volume Expansion of Crystalline Si Nanoparticles under Sodiation: In Situ TEM Study Using Graphene Liquid Cells. Microscopy and Microanalysis, 2016, 22, 1370-1371.	0.4	0
172	Multi-stacked electrodes employing aluminum coated tissue papers and non-oxidized graphene nanoflakes for high performance lithium–sulfur batteries. RSC Advances, 2016, 6, 60537-60545.	3.6	8
173	Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8, e282-e282.	7.9	89
174	Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe ₂ O ₃) photoanodes. Journal of Materials Research, 2016, 31, 1565-1573.	2.6	28
175	Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification. RSC Advances, 2016, 6, 30331-30336.	3.6	17
176	Protein-Encapsulated Catalysts: WO3 Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates (Small 7/2016). Small, 2016, 12, 964-964.	10.0	1
177	One-Dimensional RuO ₂ /Mn ₂ O ₃ Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 2076-2083.	9.1	193
178	Rational design of Sn-based multicomponent anodes for high performance lithium-ion batteries: SnO ₂ @TiO ₂ @reduced graphene oxide nanotubes. RSC Advances, 2016, 6, 2920-2925.	3.6	43
179	Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. Journal of Materials Chemistry A, 2016, 4, 703-750.	10.3	350
180	Synthesis of Ni-based co-catalyst functionalized W:BiVO ₄ nanofibers for solar water oxidation. Green Chemistry, 2016, 18, 944-950.	9.0	50

#	Article	IF	CITATIONS
181	In Situ TEM Observation on Formation of Uniform Amorphous Layer on SnO 2 Nanotube. Microscopy and Microanalysis, 2016, 22, 1322-1323.	0.4	1
182	Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries. Scientific Reports, 2015, 5, 13862.	3.3	91
183	A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries. Nanoscale, 2015, 7, 11286-11290.	5.6	19
184	Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries. ACS Nano, 2015, 9, 6717-6727.	14.6	55
185	Optical Sintering: Improved Optical Sintering Efficiency at the Contacts of Silver Nanowires Encapsulated by a Graphene Layer (Small 11/2015). Small, 2015, 11, 1356-1356.	10.0	1
186	Nanotube Arrays: Fabrication of Highly Ordered and Well-Aligned PbTiO3/TiN Core-Shell Nanotube Arrays (Small 31/2015). Small, 2015, 11, 3722-3722.	10.0	0
187	Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS ₂ Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2015, 7, 28116-28121.	8.0	92
188	Highly reversible switching from P- to N-type NO ₂ sensing in a monolayer Fe ₂ O ₃ inverse opal film and the associated P–N transition phase diagram. Journal of Materials Chemistry A, 2015, 3, 3372-3381.	10.3	164
189	Facile synthesis of hierarchical porous WO ₃ nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules. RSC Advances, 2015, 5, 7584-7588.	3.6	46
190	Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO3 Nanofibers for Selective Detection of H2S Molecules. Scientific Reports, 2015, 5, 8067.	3.3	70
191	HMGB1-binding heptamer suppresses the synergistic effect of HMGB1 and LPS by interacting directly with HMGB1. Neuroscience Letters, 2015, 593, 40-44.	2.1	6
192	Fabrication of Highly Ordered and Wellâ€Aligned PbTiO ₃ /TiN Core–Shell Nanotube Arrays. Small, 2015, 11, 3750-3754.	10.0	12
193	Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy and Environmental Science, 2015, 8, 3577-3588.	30.8	201
194	Editorial: Advances in functional ceramic materials. Journal of Electroceramics, 2014, 33, 1-1.	2.0	2
195	Overview of electroceramic materials for oxide semiconductor thin film transistors. Journal of Electroceramics, 2014, 32, 117-140.	2.0	117
196	Sulfur-impregnated MWCNT microball cathode for Li–S batteries. RSC Advances, 2014, 4, 16062.	3.6	13
197	Crystalline IrO2-decorated TiO2 nanofiber scaffolds for robust and sustainable solar water oxidation. Journal of Materials Chemistry A, 2014, 2, 5610.	10.3	34
198	Selective, sensitive, and reversible detection of H ₂ S using Mo-doped ZnO nanowire network sensors. Journal of Materials Chemistry A, 2014, 2, 6412-6418.	10.3	89

#	Article	IF	CITATIONS
199	Carbonâ€Interconnected Ge Nanocrystals as an Anode with Ultraâ€Longâ€Term Cyclability for Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 5291-5298.	14.9	82
200	Phase and microstructural evolution of Sn particles embedded in amorphous carbon nanofibers and their anode properties in Li-ion batteries. Journal of Electroceramics, 2014, 32, 261-268.	2.0	11
201	Ridge waveguide using highly oriented BaTiO ₃ thin films for electro-optic application. Journal of Asian Ceramic Societies, 2014, 2, 231-234.	2.3	20
202	Amorphous Zinc Stannate (Zn ₂ SnO ₄) Nanofibers Networks as Photoelectrodes for Organic Dye‧ensitized Solar Cells. Advanced Functional Materials, 2013, 23, 3146-3155.	14.9	67
203	Editorial: Special issue on the International Conference on Advanced Electromaterials 2011. Journal of Electroceramics, 2013, 30, 1-1.	2.0	1
204	Advances in Electrospun Functional Nanofibers. Macromolecular Materials and Engineering, 2013, 298, 473-474.	3.6	12
205	Bifunctional Composite Catalysts Using Co ₃ O ₄ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle Li–O ₂ Batteries. Nano Letters, 2013, 13, 4190-4197.	9.1	329
206	Cobalt(ii) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3239.	10.3	68
207	Sensors: Thinâ€Wall Assembled SnO ₂ Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaledâ€Breathâ€Sensing Properties for the Diagnosis of Diabetes (Adv. Funct. Mater.) Tj E	[Qq1]4.190.7	'84 8 14 rgBT
208	Thinâ€Wall Assembled SnO ₂ Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaledâ€Breathâ€Sensing Properties for the Diagnosis of Diabetes. Advanced Functional Materials, 2013, 23, 2357-2367.	14.9	328
209	Facile Synthesis of pâ€type Perovskite SrTi _{0.65} Fe _{0.35} O _{3–<i>δ</i>} Nanofibers Prepared by Electrospinning and Their Oxygenâ€Sensing Properties. Macromolecular Materials and Engineering, 2013, 298, 521-527.	3.6	22
210	HMGB1-Binding Heptamer Confers Anti-Inflammatory Effects in Primary Microglia Culture. Experimental Neurobiology, 2013, 22, 301-307.	1.6	14
211	Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. Journal of Electroceramics, 2012, 29, 106-116.	2.0	79
212	Intranasal delivery of HMGB1-binding heptamer peptide confers a robust neuroprotection in the postischemic brain. Neuroscience Letters, 2012, 525, 179-183.	2.1	33
213	Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiology of Disease, 2012, 46, 147-156.	4.4	204
214	Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. Journal of Materials Chemistry, 2011, 21, 18560.	6.7	103
215	The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO ₂ â€Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies. Advanced Functional Materials, 2011, 21, 4456-4463.	14.9	329
216	Gas Sensors: The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO ₂ â€Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies (Adv. Funct. Mater. 23/2011). Advanced Functional Materials, 2011, 21, 4402-4402.	14.9	5

#	Article	IF	CITATIONS
217	Microsphere Templating as Means of Enhancing Surface Activity and Gas Sensitivity of CaCu3Ti4O12Thin Films. Nano Letters, 2006, 6, 193-198.	9.1	147
218	The effect of processing parameter on the piezoelectric d-coefficients of PZT thin films. Ferroelectrics, 2001, 263, 27-32.	0.6	1
219	Evaluation method of longitudinal and transverse piezoelectric d-coefficients for thin films. Integrated Ferroelectrics, 2001, 35, 299-312.	0.7	2