Frank Edenhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501461/publications.pdf

Version: 2024-02-01

91 papers 6,089 citations

34 h-index 74160 75 g-index

92 all docs 92 docs citations

92 times ranked 9646 citing authors

#	Article	IF	CITATIONS
1	Generation of the human induced pluripotent stem cell line (IBKMOLi002-A) from PBMCs of a patient carrying the heterozygous L271H mutation of the voltage-gated calcium channel subunit Cav1.3-encoding CACNA1D gene. Stem Cell Research, 2022, 61, 102784.	0.7	1
2	Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. Journal of Neural Transmission, 2021, 128, 225-241.	2.8	8
3	Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9. Stem Cell Research, 2021, 51, 102169.	0.7	3
4	CRISPR/Cas9-edited PKP2 knock-out (JMUi001-A-2) and DSG2 knock-out (JMUi001-A-3) iPSC lines as an isogenic human model system for arrhythmogenic cardiomyopathy (ACM). Stem Cell Research, 2021, 53, 102256.	0.7	1
5	Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nature Neuroscience, 2021, 24, 913-929.	14.8	64
6	High Glycolytic Activity Enhances Stem Cell Reprogramming of Fahd1-KO Mouse Embryonic Fibroblasts. Cells, 2021, 10, 2040.	4.1	3
7	Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell, 2021, 28, 1533-1548.e6.	11.1	119
8	Generation of an hiPSC-1 knock-in line expressing TY1-tagged MNX1-protein together with mScarlet. Stem Cell Research, 2021, 56, 102522.	0.7	2
9	Autophagy in α-Synucleinopathies—An Overstrained System. Cells, 2021, 10, 3143.	4.1	12
10	Targeting $\hat{I}\pm$ -Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Frontiers in Neurology, 2021, 12, 786835.	2.4	3
11	Combination of In Situ Lcn2 pRNA-RNAi Nanotherapeutics and iNSC Transplantation Ameliorates Experimental SCI in Mice. Molecular Therapy, 2020, 28, 2677-2690.	8.2	9
12	Development of a bioreactor system for preâ€endothelialized cardiac patch generation with enhanced viscoelastic properties by combined collagen I compression and stromal cell culture. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1749-1762.	2.7	3
13	Energy Metabolism Disturbances in Cell Models of PARK2 CNV Carriers with ADHD. Journal of Clinical Medicine, 2020, 9, 4092.	2.4	7
14	A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nature Communications, 2020, 11, 2680.	12.8	97
15	Generation of two patient-derived iPSC lines from siblings (LIBUCi001-A and LIBUCi002-A) and a genetically modified iPSC line (JMUi001-A-1) to mimic dilated cardiomyopathy with ataxia (DCMA) caused by a homozygous DNAJC19 mutation. Stem Cell Research, 2020, 46, 101856.	0.7	5
16	Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathologica Communications, 2020, 8, 84.	5.2	21
17	Take the shortcut – direct conversion of somatic cells into induced neural stem cells and their biomedical applications. FEBS Letters, 2019, 593, 3353-3369.	2.8	26
18	Nextâ€generation disease modeling with direct conversion: a new path to old neurons. FEBS Letters, 2019, 593, 3316-3337.	2.8	38

#	Article	IF	CITATIONS
19	Generation of two induced pluripotent stem cell lines from skin fibroblasts of sisters carrying a c.1094C>A variation in the SCN10A gene potentially associated with small fiber neuropathy. Stem Cell Research, 2019, 35, 101396.	0.7	3
20	Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. Cell Stem Cell, 2019, 24, 166-182.e13.	11.1	39
21	Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3. Stem Cell Research, 2018, 28, 136-140.	0.7	11
22	Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell, 2018, 22, 355-368.e13.	11.1	216
23	BMP/SMAD Pathway Promotes Neurogenesis of Midbrain Dopaminergic Neurons <i>In Vivo</i> and in Human Induced Pluripotent and Neural Stem Cells. Journal of Neuroscience, 2018, 38, 1662-1676.	3.6	66
24	A novel conditional <i>Aire</i> allele enables cellâ€specific ablation of the immune tolerance regulator Aire. European Journal of Immunology, 2018, 48, 546-548.	2.9	8
25	Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using singleâ€use bioreactors. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1076-e1087.	2.7	52
26	Need for high-resolution Genetic Analysis in iPSC: Results and Lessons from the ForIPS Consortium. Scientific Reports, 2018, 8, 17201.	3.3	70
27	Generation of Cardiomyocytes From Vascular Adventitia-Resident Stem Cells. Circulation Research, 2018, 123, 686-699.	4.5	23
28	Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile. Cell Reports, 2018, 23, 2550-2558.	6.4	93
29	Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay. International Journal of Cardiology, 2018, 269, 229-234.	1.7	19
30	Generation of the human induced pluripotent stem cell line (UKWNLi001-A) from skin fibroblasts of a woman with Fabry disease carrying the X-chromosomal heterozygous c.708 G > C (W236C) missense mutation in exon 5 of the alpha-galactosidase–A gene. Stem Cell Research, 2018, 31, 222-226.	0.7	6
31	Generation of a Human Cardiac Patch Based on a Reendothelialized Biological Scaffold (BioVaSc). Advanced Biology, 2017, 1, 1600005.	3.0	14
32	Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells. Stem Cell Reports, 2017, 8, 894-906.	4.8	225
33	Abrogation of Gap Junctional Communication in ES Cells Results in a Disruption of Primitive Endoderm Formation in Embryoid Bodies. Stem Cells, 2017, 35, 859-871.	3.2	11
34	The vascular adventitia: An endogenous, omnipresent source of stem cells in the body., 2017, 171, 13-29.		43
35	Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Frontiers in Cellular Neuroscience, 2017, 11, 307.	3.7	21
36	Lowâ€density lipoprotein receptorâ€related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia, 2016, 64, 1363-1380.	4.9	53

#	Article	IF	Citations
37	Nanog induces suppression of senescence via down-regulation of p27KIP1 expression. Journal of Cell Science, 2016, 129, 912-20.	2.0	24
38	Partial Dedifferentiation of Murine Radial Glia-Type Neural Stem Cells by Brn2 and c-Myc Yields Early Neuroepithelial Progenitors. Journal of Molecular Biology, 2016, 428, 1476-1483.	4.2	6
39	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	28.9	209
40	Model Testing of PluriTest with Next-Generation Sequencing Data. Stem Cells and Development, 2016, 25, 569-571.	2.1	5
41	Nanog induces suppression of senescence through downregulation of p27KIP1 expression. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	0
42	Derivation of Adult Human Fibroblasts and their Direct Conversion into Expandable Neural Progenitor Cells. Journal of Visualized Experiments, 2015, , e52831.	0.3	23
43	Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. Stem Cell Reviews and Reports, 2015, 11, 560-569.	5 . 6	57
44	Quantification of cell fusion events human breast cancer cells and breast epithelial cells using a Cre-LoxP-based double fluorescence reporter system. Cellular and Molecular Life Sciences, 2015, 72, 3769-3782.	5.4	30
45	Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Research and Therapy, 2014, 5, 47.	5 . 5	28
46	Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Research, 2014, 12, 680-689.	0.7	26
47	Characterization of a novel cell penetrating peptide derived from human Oct4. Cell Regeneration, 2014, 3, 3:2.	2.6	26
48	Injection of next-generation directly-induced neural stem cells (iNSCs) induces recovery in a mouse model of multiple sclerosis. Journal of Neuroimmunology, 2014, 275, 193.	2.3	2
49	Characterization of a novel cell penetrating peptide derived from human Oct4. New Biotechnology, 2014, 31, S6.	4.4	0
50	Abstract 4863: Quantification of cell fusion events between breast cancer cells and breast epithelial cells. , 2014 , , .		0
51	A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013, 4, 1335.	12.8	112
52	A LewisX Glycoprotein Screen Identifies the Low Density Lipoprotein Receptor-related Protein 1 (LRP1) as a Modulator of Oligodendrogenesis in Mice. Journal of Biological Chemistry, 2013, 288, 16538-16545.	3.4	36
53	Roadmap to Cellular Reprogramming – Manipulating Transcriptional Networks with DNA, RNA, Proteins and Small Molecules. Current Molecular Medicine, 2013, 13, 868-878.	1.3	14
54	Cellular Reprogramming Employing Recombinant Sox2 Protein. Stem Cells International, 2012, 2012, 1-10.	2.5	43

#	Article	IF	Citations
55	Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell Stem Cell, 2012, 10, 473-479.	11.1	473
56	MicroRNAs Are Indispensable for Reprogramming Mouse Embryonic Fibroblasts into Induced Stem Cell-Like Cells. PLoS ONE, 2012, 7, e39239.	2.5	26
57	Automated selection and harvesting of pluripotent stem cell colonies. Biotechnology and Applied Biochemistry, 2012, 59, 77-87.	3.1	23
58	Non-Genetic Modulation of Notch Activity by Artificial Delivery of Notch Intracellular Domain into Neural Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 672-684.	5.6	10
59	Genetic engineering of mammalian cells by direct delivery of FLP recombinase protein. Methods, 2011, 53, 386-393.	3.8	13
60	Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cellular and Molecular Life Sciences, 2010, 67, 2439-2449.	5.4	35
61	Inhibition of Notch Signaling in Human Embryonic Stem Cell–Derived Neural Stem Cells Delays G1/S Phase Transition and Accelerates Neuronal Differentiation ⟨i⟩In Vitro⟨/i⟩ and ⟨i⟩In Vivo⟨/i⟩. Stem Cells, 2010, 28, 955-964.	3.2	215
62	Engineering Cell-Permeant FLP Recombinase for Tightly Controlled Inducible and Reversible Overexpression in Embryonic Stem Cells. Stem Cells, 2010, 28, 894-902.	3.2	18
63	Sox2 Is Essential for Formation of Trophectoderm in the Preimplantation Embryo. PLoS ONE, 2010, 5, e13952.	2.5	173
64	Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. International Journal of Developmental Biology, 2010, 54, 1713-1721.	0.6	61
65	Peroxisome Proliferator-Activated Receptor (PPAR) \hat{l}^3 Can Inhibit Chronic Renal Allograft Damage. American Journal of Pathology, 2010, 176, 2150-2162.	3.8	34
66	Novel Reporter Mouse Reveals Constitutive and Inflammatory Expression of IFN- \hat{l}^2 In Vivo. Journal of Immunology, 2009, 183, 3229-3236.	0.8	205
67	Dre recombinase, like Cre, is a highly efficient site-specific recombinase in <i>E. coli</i> , mammalian cells and mice. DMM Disease Models and Mechanisms, 2009, 2, 508-515.	2.4	254
68	Increased Antigen Cross-Presentation but Impaired Cross-Priming after Activation of Peroxisome Proliferator-Activated Receptor \hat{I}^3 Is Mediated by Up-Regulation of B7H1. Journal of Immunology, 2009, 183, 129-136.	0.8	36
69	Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming. Cellular and Molecular Life Sciences, 2009, 66, 3403-3420.	5.4	10
70	Monodispersity of recombinant Cre recombinase correlates with its effectiveness in vivo. BMC Biotechnology, 2009, 9, 80.	3.3	5
71	Engineering Cell-permeable Protein. Journal of Visualized Experiments, 2009, , .	0.3	10
72	Generation of transducible versions of transcription factors Oct4 and Sox2. Biological Chemistry, 2008, 389, 851-861.	2.5	71

#	Article	IF	Citations
73	Runx genes are direct targets of ScI/Tal1 in the yolk sac and fetal liver. Blood, 2008, 111, 3005-3014.	1.4	76
74	Protein Transduction Revisited: Novel Insights Into the Mechanism Underlying Intracellular Delivery of Proteins. Current Pharmaceutical Design, 2008, 14, 3628-3636.	1.9	46
75	Peroxisome Proliferator-Activated Receptor Î ³ Control of Dendritic Cell Function Contributes to Development of CD4+ T Cell Anergy. Journal of Immunology, 2007, 178, 2122-2131.	0.8	108
76	Stem Cell Engineering Using Transducible Cre Recombinase. Methods in Molecular Medicine, 2007, 140, 17-32.	0.8	14
77	Stage-Specific Conditional Mutagenesis in Mouse Embryonic Stem Cell-Derived Neural Cells and Postmitotic Neurons by Direct Delivery of Biologically Active Cre Recombinase. Stem Cells, 2007, 25, 181-188.	3.2	22
78	Enhanced purification of cellâ€permeant Cre and germline transmission after transduction into mouse embryonic stem cells. Genesis, 2007, 45, 508-517.	1.6	34
79	Conditional Mutagenesis by Cell-Permeable Proteins: Potential, Limitations and Prospects. , 2007, , 203-232.		14
80	Merging Fields: Stem Cells in Neurogenesis, Transplantation, and Disease Modeling. Brain Pathology, 2006, 16, 155-168.	4.1	26
81	Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nature Methods, 2006, 3, 461-467.	19.0	100
82	Cargoâ€dependent mode of uptake and bioavailability of TATâ€containing proteins and peptides in living cells. FASEB Journal, 2006, 20, 1775-1784.	0.5	379
83	mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Molecular and Cellular Biology, 2004, 24, 6710-6718.	2.3	562
84	Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: A tool for efficient genetic engineering of mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4489-4494.	7.1	318
85	Efficient in vitro and in vivo excision of floxed sequences with a high-capacity adenoviral vector expressing CRE recombinase. Genesis, 2002, 33, 119-124.	1.6	14
86	New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Research, 2001, 29, 47e-47.	14.5	62
87	The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nature Medicine, 1997, 3, 1383-1388.	30.7	399
88	Chemistry and Molecular Biology of Transmissible Spongiform Encephalopathies. Angewandte Chemie International Edition in English, 1997, 36, 1674-1694.	4.4	11
89	Recombinant Prion Protein rPrP27-30 from Syrian Golden Hamster Reveals Proteinase K Sensitivity. Biochemical and Biophysical Research Communications, 1996, 219, 173-179.	2.1	13
90	Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. Journal of Virology, 1996, 70, 4724-4728.	3.4	136

#	Article	IF	CITATIONS
91	Overexpression of active Syrian golden hamster prion protein PrPc as a glutathione S-transferase fusion in heterologous systems. Journal of Virology, 1995, 69, 4776-4783.	3.4	47