
Bao-Liang Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5500440/publications.pdf Version: 2024-02-01

RAO-LIANC OIAN

#	Article	IF	CITATIONS
1	Recent Advance in Long-Pulse HPM Sources With Repetitive Operation in S-, C-, and X-Bands. IEEE Transactions on Plasma Science, 2011, 39, 1438-1445.	1.3	191
2	An L-band coaxial relativistic backward wave oscillator with mechanical frequency tunability. Applied Physics Letters, 2010, 97, .	3.3	73
3	A novel TEM-TE/sub 11/ mode converter. IEEE Microwave and Wireless Components Letters, 2005, 15, 513-515.	3.2	72
4	Asymmetric-mode competition in a relativistic backward wave oscillator with a coaxial slow-wave structure. Applied Physics Letters, 2010, 97, .	3.3	49
5	Research of a High-Current Repetitive Triggered Spark-Gap Switch and its Application. IEEE Transactions on Plasma Science, 2010, 38, 516-522.	1.3	38
6	Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices. Physics of Plasmas, 2009, 16, .	1.9	31
7	Compact Rep-Rate GW Pulsed Generator Based on Forming Line With Built-In High-Coupling Transformer. IEEE Transactions on Plasma Science, 2014, 42, 241-248.	1.3	27
8	A Novel Phase Shifter for Ku-Band High-Power Microwave Applications. IEEE Transactions on Plasma Science, 2014, 42, 51-54.	1.3	26
9	Gas breakdown driven by L band short-pulse high-power microwave. Physics of Plasmas, 2012, 19, 122101.	1.9	23
10	Investigation on Adjustable Magnetic Pulse Compressor in Power Supply System. IEEE Transactions on Power Electronics, 2019, 34, 1540-1547.	7.9	19
11	A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structure and depth-tunable extractor. Physics of Plasmas, 2013, 20, 023105.	1.9	18
12	The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator. Applied Physics Letters, 2014, 105, 183503.	3.3	18
13	Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure. Physics of Plasmas, 2009, 16, 113104.	1.9	17
14	A compact P-band coaxial relativistic backward wave oscillator with only three periods slow wave structure. Physics of Plasmas, 2011, 18, .	1.9	17
15	Investigation on a High Power, Low Impedance, and Long Pulse Generator Based on Magnetic Switches. IEEE Transactions on Plasma Science, 2014, 42, 988-992.	1.3	16
16	Relativistic motion of a charged particle in a superposition of circularly polarized plane electromagnetic waves and a uniform magnetic field. Physics of Plasmas, 2000, 7, 537-543.	1.9	15
17	A modified relativistic magnetron with TEM output mode. Physics of Plasmas, 2017, 24, .	1.9	14
18	Analysis and Simulation of a Gigawatt-Class <i>Ka</i> -Band Radial Transit Time Oscillator. IEEE Transactions on Electron Devices, 2019, 66, 3178-3183.	3.0	13

BAO-LIANG QIAN

#	Article	IF	CITATIONS
19	A compact relativistic backward-wave oscillator with metallized plastic components. Applied Physics Letters, 2014, 105, 123501.	3.3	12
20	Ku-Band Rectangular Waveguide Wide Side Dimension Adjustable Phase Shifter. IEEE Transactions on Plasma Science, 2015, 43, 1666-1669.	1.3	12
21	Analytical and numerical calculations of the dispersion characteristics of two-dimensional dielectric photonic band gap structures. Journal of Applied Physics, 2006, 99, 063104.	2.5	11
22	Relativistic electron-beam generation in a gas-loaded foil-less diode. Applied Physics Letters, 1998, 73, 2420-2422.	3.3	10
23	An exact solution of the relativistic equation of motion of a charged particle driven by a circularly polarized electromagnetic wave and a constant magnetic field. IEEE Transactions on Plasma Science, 1999, 27, 1578-1581.	1.3	10
24	Measurement of S-Band Microwave Gas Breakdown by Enhancing the Electric Field in a Waveguide. IEEE Transactions on Plasma Science, 2012, 40, 3427-3432.	1.3	10
25	Experimental study of a compact P-band coaxial relativistic backward wave oscillator with three periods slow wave structure. Physics of Plasmas, 2012, 19, .	1.9	9
26	A new coaxial high power microwave source based on dual beams. Physics of Plasmas, 2014, 21, 053302.	1.9	9
27	A Compact Mode Conversion Configuration in Relativistic Magnetron With a TE ₁₀ Output Mode. IEEE Transactions on Plasma Science, 2015, 43, 3512-3516.	1.3	9
28	The space-charge limiting current of a sheet relativistic electron beam in a rippled rectangular waveguide. Physics of Plasmas, 2009, 16, 083106.	1.9	8
29	Developing a solid-state quasi-square pulse Marx generator. Review of Scientific Instruments, 2018, 89, 064707.	1.3	8
30	Characteristics of long gap surface flashover channel in vacuum under nanosecond quasi-square pulses. Applied Physics Letters, 2012, 101, 082903.	3.3	7
31	Preliminary experimental investigation of a complex dual-band high power microwave source. Review of Scientific Instruments, 2015, 86, 104703.	1.3	7
32	Development of a GW-Level Solid-State Long Pulse Generator. IEEE Transactions on Plasma Science, 2019, 47, 4512-4517.	1.3	7
33	Two-dimensional analysis of the relativistic parapotential electron flow in a magnetically insulated transmission line oscillator (MILO). IEEE Transactions on Plasma Science, 2000, 28, 760-766.	1.3	6
34	Experimental investigations of the TE11 mode radiation from a relativistic magnetron with diffraction output. Physics of Plasmas, 2012, 19, .	1.9	6
35	Experimental investigation of surface flashover of PMMA, HDPE and PA in vacuum using 180 nanosecond quasi-square pulses. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19, 1440-1447.	2.9	6
36	A high-voltage, long-pulse generator based on magnetic pulse compressor and Blumlein-type rolled strip pulse forming line. Laser and Particle Beams, 2015, 33, 511-518.	1.0	6

BAO-LIANG QIAN

#	Article	IF	CITATIONS
37	An Adjustable Magnetic Switch. IEEE Transactions on Plasma Science, 2015, 43, 2687-2693.	1.3	6
38	Experiment on the plasma-loaded backward-wave oscillator using a gas-loaded foil-less diode. Journal of Applied Physics, 2000, 88, 3059-3063.	2.5	5
39	Surface Flashover Phenomenon Under 180-ns Quasi-Square Wave With Voltage of Several Hundred Kilovolts. IEEE Transactions on Plasma Science, 2011, 39, 1868-1873.	1.3	5
40	Output voltage waveform analysis of an intense electron beam accelerator based on strip spiral Blumlein line. Laser and Particle Beams, 2012, 30, 379-385.	1.0	5
41	A frequency tunable relativistic magnetron with a wide operation regime. AIP Advances, 2017, 7, .	1.3	5
42	Performance testing of a carbon fiber array cathode in a hard-tube MILO. Journal of Applied Physics, 2017, 122, .	2.5	5
43	Derivation and generalization of the dispersion relation of rising-sun magnetron with sectorial and rectangular cavities. Physics of Plasmas, 2013, 20, 123113.	1.9	4
44	Theoretical investigations on radiation generation of TEM, linearly or circularly polarized TEn1 coaxial waveguide mode in relativistic magnetron. Scientific Reports, 2017, 7, 1491.	3.3	4
45	Outgassing rate analysis of a velvet cathode and a carbon fiber cathode. Journal of Applied Physics, 2017, 122, .	2.5	4
46	The possibility of using glycerin as the dielectric in pulse forming lines. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 339-345.	2.9	4
47	Preliminary experimental research of a Ka-band radial transit time oscillator. Review of Scientific Instruments, 2020, 91, 104701.	1.3	4
48	Investigation on Dynamic Properties of Amorphous Magnetic Core Stimulated by Different Driving Voltages. IEEE Transactions on Plasma Science, 2019, 47, 4536-4540.	1.3	3
49	A high power radial Ka-band transit time oscillator with nonuniform extractor. Physica Scripta, 2020, 95, 035503.	2.5	3
50	Operating characteristics of intense electron beam accelerator at different load conditions. Laser and Particle Beams, 2012, 30, 531-539.	1.0	2
51	Application of high speed frame camera on the intense electron beam accelerator: An overview. Laser and Particle Beams, 2013, 31, 643-652.	1.0	2
52	A smart repetitive-rate wideband high power microwave source. Physics of Plasmas, 2016, 23, 013106.	1.9	2
53	A high power capacity Ka-band radial transit time oscillator with one-gap extraction cavity. AIP Advances, 2020, 10, 025107.	1.3	2
54	A durable microsecond solid-state pulsed power system. Review of Scientific Instruments, 2021, 92, 054707.	1.3	2

BAO-LIANG QIAN

#	Article	IF	CITATIONS
55	A gigawatt level repetitive rate adjustable magnetic pulse compressor. Review of Scientific Instruments, 2015, 86, 084705.	1.3	1
56	Development of a test platform for high voltage ceramic capacitors based on magnetic compression. , 2016, , .		1
57	Bubble deformation in the repetitive pulsed glycerin pulse forming line and its relation with the liquid breakdown. AIP Advances, 2019, 9, 115102.	1.3	1
58	Unusual Response of Thin LiTaO3 Films to Intense Microwave Pulses. Materials, 2019, 12, 3588.	2.9	1
59	Investigation of an X-band Cerenkov-type high power microwave oscillator driven by sheet electron beam. AIP Advances, 2021, 11, 055001.	1.3	1
60	High-power microwave generation by a plasma-loaded backward-wave oscillator. , 0, , .		0
61	Analytical and Numerical Calculations of Two Dimensional Dielectric Photonic Band Gap Structures and Cavities for Laser Acceleration. , 0, , .		0
62	Electron beam propagation in a coaxial drift cavity with split-foil. , 2008, , .		0
63	Particle simulation of a sinusoidal corrugation compact L-band coaxial backward wave oscillator. , 2008, , .		0
64	Investigation on a Self-Breakdown Repetitive Gap Switch Based on the Graphite Electrodes With TiC Surface Modification. IEEE Transactions on Plasma Science, 2022, 50, 709-714.	1.3	0