List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5500222/publications.pdf Version: 2024-02-01

RENEE A REHO PERA

#	Article	IF	CITATIONS
1	Transcriptional control of human gametogenesis. Human Reproduction Update, 2022, 28, 313-345.	5.2	7
2	Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Reports, 2022, 23, e53968.	2.0	20
3	Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochemistry and Cell Biology, 2021, 156, 197-207.	0.8	11
4	Stem cell therapy for Parkinson's disease: safety and modeling. Neural Regeneration Research, 2020, 15, 36.	1.6	34
5	Links between age at menarche, antral follicle count, and body mass index in African American and European American women. Fertility and Sterility, 2019, 111, 122-131.	0.5	7
6	Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells, 2019, 8, 26.	1.8	82
7	A PAX5–OCT4–PRDM1 developmental switch specifies human primordial germ cells. Nature Cell Biology, 2018, 20, 655-665.	4.6	33
8	A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nature Communications, 2018, 9, 4384.	5.8	25
9	A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations. Cell Reports, 2017, 18, 2533-2546.	2.9	20
10	Spatiotemporal Reconstruction of the Human Blastocyst by Single-Cell Gene-Expression Analysis Informs Induction of Naive Pluripotency. Developmental Cell, 2016, 38, 100-115.	3.1	35
11	Creating human germ cells for unmet reproductive needs. Nature Biotechnology, 2016, 34, 470-473.	9.4	9
12	Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter. Scientific Reports, 2016, 6, 25181.	1.6	16
13	Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nature Communications, 2016, 7, 10809.	5.8	145
14	Transcriptional comparison of human induced and primary midbrain dopaminergic neurons. Scientific Reports, 2016, 6, 20270.	1.6	38
15	Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence. Stem Cells and Development, 2016, 25, 453-461.	1.1	38
16	The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nature Genetics, 2016, 48, 44-52.	9.4	153
17	Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS ONE, 2016, 11, e0165268.	1.1	22
18	Single-Cell <i>XIST</i> Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 1771-1781.	1.4	30

#	Article	IF	CITATIONS
19	Dynamic and social behaviors of human pluripotent stem cells. Scientific Reports, 2015, 5, 14209.	1.6	18
20	DDX3Y gene rescue of a Y chromosome AZFa deletion restores germ cell formation and transcriptional programs. Scientific Reports, 2015, 5, 15041.	1.6	63
21	Relationship between semen production and medical comorbidity. Fertility and Sterility, 2015, 103, 66-71.	0.5	154
22	Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nature Communications, 2015, 6, 7601.	5.8	109
23	Direct in vivo assessment of human stem cell graft–host neural circuits. NeuroImage, 2015, 114, 328-337.	2.1	33
24	Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature, 2015, 522, 221-225.	13.7	507
25	Preimplantation Embryo Development and Primordial Germ Cell Lineage Specification. , 2015, , 233-265.		3
26	Rapid and Efficient Conversion of Integration-Free Human Induced Pluripotent Stem Cells to GMP-Grade Culture Conditions. PLoS ONE, 2014, 9, e94231.	1.1	43
27	Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres. Human Molecular Genetics, 2014, 23, 4970-4984.	1.4	30
28	Editorial overview: Cell reprogramming, regeneration and repair. Current Opinion in Genetics and Development, 2014, 28, v-vi.	1.5	0
29	A Modified Method for Implantation of Pluripotent Stem Cells Under the Rodent Kidney Capsule. Stem Cells and Development, 2014, 23, 2119-2125.	1.1	11
30	Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Human Molecular Genetics, 2014, 23, 3071-3084.	1.4	56
31	Fate of iPSCs Derived from Azoospermic and Fertile Men following Xenotransplantation to Murine Seminiferous Tubules. Cell Reports, 2014, 7, 1284-1297.	2.9	91
32	X chromosome inactivation: recent advances and a look forward. Current Opinion in Genetics and Development, 2014, 28, 78-82.	1.5	43
33	MP66-18 EVIDENCE OF SPERMATOGENIC DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS IN AN IN VITRO HOLLOW FIBER MODEL. Journal of Urology, 2014, 191, .	0.2	Ο
34	Concurrent Generation of Functional Smooth Muscle and Endothelial Cells via a Vascular Progenitor. Stem Cells Translational Medicine, 2014, 3, 91-97.	1.6	41
35	Directed Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2014, , 51737.	0.2	40
36	Abnormal Early Cleavage Events Predict Early Embryo Demise: Sperm Oxidative Stress and Early Abnormal Cleavage. Scientific Reports, 2014, 4, 6598.	1.6	48

#	Article	IF	CITATIONS
37	Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies. Scientific Reports, 2014, 4, 6432.	1.6	24
38	Human Germ Cell Differentiation from Pluripotent Embryonic Stem Cells and Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2014, 1154, 563-578.	0.4	3
39	More than just a matter of time. Reproductive BioMedicine Online, 2013, 27, 113-114.	1.1	5
40	Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertility and Sterility, 2013, 99, 1035-1043.	0.5	108
41	Ethical and Legal Issues Arising in Research on Inducing Human Germ Cells from Pluripotent Stem Cells. Cell Stem Cell, 2013, 13, 145-148.	5.2	44
42	Reprogramming of Fibroblasts From Older Women With Pelvic Floor Disorders Alters Cellular Behavior Associated With Donor Age. Stem Cells Translational Medicine, 2013, 2, 118-128.	1.6	21
43	Germ-cell differentiation from pluripotent cells. , 2013, , 15-29.		1
44	Status of human germ cell differentiation from pluripotent stem cells. Reproduction, Fertility and Development, 2013, 25, 396.	0.1	2
45	Generation of Human Induced Pluripotent Stem Cells Using Epigenetic Regulators Reveals a Germ Cell-Like Identity in Partially Reprogrammed Colonies. PLoS ONE, 2013, 8, e82838.	1.1	10
46	Promotion of Human Early Embryonic Development and Blastocyst Outgrowth In Vitro Using Autocrine/Paracrine Growth Factors. PLoS ONE, 2012, 7, e49328.	1.1	67
47	Genetic markers of ovarian follicle number and menopause in women of multiple ethnicities. Human Genetics, 2012, 131, 1709-1724.	1.8	60
48	Activation of Innate Immunity Is Required for Efficient Nuclear Reprogramming. Cell, 2012, 151, 547-558.	13.5	329
49	Genetic variants and environmental factors associated with hormonal markers of ovarian reserve in Caucasian and African American women. Human Reproduction, 2012, 27, 594-608.	0.4	91
50	Hydrogel crosslinking density regulates temporal contractility of human embryonic stem cell-derived cardiomyocytes in 3D cultures. Soft Matter, 2012, 8, 10141.	1.2	57
51	Human Amniotic Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells May Generate a Universal Source of Cardiac Cells. Stem Cells and Development, 2012, 21, 2798-2808.	1.1	42
52	Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nature Communications, 2012, 3, 1251.	5.8	260
53	Divergent RNAâ€binding Proteins, DAZL and VASA, Induce Meiotic Progression in Human Germ Cells Derived in Vitro. Stem Cells, 2012, 30, 441-451.	1.4	146
54	Therapeutic Applications of Induced Pluripotent Stem Cells in Parkinson's Disease. , 2012, , 409-420.		0

54 Therapeutic Applications of Induced Pluripotent Stem Cells in Parkinson's Disease. , 2012, , 409-420.

#	Article	IF	CITATIONS
55	Human pre-implantation embryo development. Development (Cambridge), 2012, 139, 829-841.	1.2	289
56	Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Current Neurology and Neuroscience Reports, 2012, 12, 237-242.	2.0	62
57	Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature, 2011, 474, 399-402.	13.7	220
58	Donation of Embryos for Human Development and Stem Cell Research. Cell Stem Cell, 2011, 8, 360-362.	5.2	22
59	SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 2011, 6, e26159.	1.1	257
60	Bone returns the favour. Nature, 2011, 472, 46-47.	13.7	11
61	Making Germ Cells from Human Embryonic Stem Cells. , 2011, , 49-86.		1
62	NANOS3 function in human germ cell development. Human Molecular Genetics, 2011, 20, 2238-2250.	1.4	91
63	Pumilio-2 Function in the Mouse Nervous System. PLoS ONE, 2011, 6, e25932.	1.1	69
64	Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology, 2010, 28, 1115-1121.	9.4	688
65	The Polycystic Ovary Post-Rotterdam: A Common, Age-Dependent Finding in Ovulatory Women without Metabolic Significance. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4965-4972.	1.8	173
66	Testicular germline stem cells. Nature Reviews Urology, 2010, 7, 94-100.	1.9	7
67	Antral follicle count: absence of significant midlife decline. Fertility and Sterility, 2010, 94, 2182-2185.	0.5	48
68	Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes. PLoS ONE, 2010, 5, e10979.	1.1	30
69	Estrogen Receptor β-Selective Agonists Stimulate Calcium Oscillations in Human and Mouse Embryonic Stem Cell-Derived Neurons. PLoS ONE, 2010, 5, e11791.	1.1	25
70	Dazl Functions in Maintenance of Pluripotency and Genetic and Epigenetic Programs of Differentiation in Mouse Primordial Germ Cells In Vivo and In Vitro. PLoS ONE, 2009, 4, e5654.	1.1	100
71	Enhanced Generation of Induced Pluripotent Stem Cells from a Subpopulation of Human Fibroblasts. PLoS ONE, 2009, 4, e7118.	1.1	68
72	Instructing an Embryonic Stem Cell-Derived Oocyte Fate: Lessons from Endogenous Oogenesis. Endocrine Reviews, 2009, 30, 264-283.	8.9	46

#	Article	IF	CITATIONS
73	Germ Cell–Specific Methylation Pattern: Erasure and Reestablishment. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 43-56.	0.1	0
74	Characterization of a <i>Dazl</i> FP germ cellâ€specific reporter. Genesis, 2009, 47, 74-84.	0.8	35
75	Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 2009, 462, 222-225.	13.7	450
76	Human Embryonic Stem Cells and Germ Cell Development. , 2009, , 55-66.		0
77	Gene expression profiles of human inner cell mass cells and embryonic stem cells. Differentiation, 2009, 78, 18-23.	1.0	37
78	Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Human Molecular Genetics, 2009, 18, 4376-4389.	1.4	76
79	Germ Cell–Specific Methylation Pattern: Erasure and Reestablishment. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 43-56.	0.1	0
80	Noninvasive Human Nuclear Transfer with Embryonic Stem Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5040-pdb.prot5040.	0.2	2
81	Preparation of Human Foreskin Fibroblasts for Human Embryonic Stem Cell Culture. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5043.	0.2	7
82	Preparation of Mouse Embryonic Fibroblast Feeder Cells for Human Embryonic Stem Cell Culture. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5041.	0.2	12
83	Culturing Human Embryonic Stem Cells with Mouse Embryonic Fibroblast Feeder Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5042-pdb.prot5042.	0.2	4
84	Culturing Human Embryonic Stem Cells in Feeder-Free Conditions. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5044-pdb.prot5044.	0.2	10
85	Method for Single-Cell Sorting and Expansion of Genetically Modified Human Embryonic Stem Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5045.	0.2	Ο
86	DNA Methylation Analysis of Human Imprinted Loci by Bisulfite Genomic Sequencing. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5046.	0.2	1
87	Metaphase Spreads and Spectral Karyotyping of Human Embryonic Stem Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5047-pdb.prot5047.	0.2	5
88	Human Germ Cell Lineage Differentiation from Embryonic Stem Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5048-pdb.prot5048.	0.2	5
89	The road to pluripotence: the research response to the embryonic stem cell debate. Human Molecular Genetics, 2008, 17, R3-R9.	1.4	16
90	Stems cells and regeneration: Special Review Issue. Human Molecular Genetics, 2008, 17, R1-R2.	1.4	3

#	Article	IF	CITATIONS
91	Defining Human Embryo Phenotypes by Cohort-Specific Prognostic Factors. PLoS ONE, 2008, 3, e2562.	1.1	29
92	High-Efficiency Stem Cell Fusion-Mediated Assay Reveals Sall4 as an Enhancer of Reprogramming. PLoS ONE, 2008, 3, e1955.	1.1	61
93	A Novel and Critical Role for Oct4 as a Regulator of the Maternal-Embryonic Transition. PLoS ONE, 2008, 3, e4109.	1.1	99
94	A Method for Single-Cell Sorting and Expansion of Genetically Modified Human Embryonic Stem Cells. Stem Cells and Development, 2007, 16, 109-118.	1.1	22
95	Intermolecular interactions of homologs of germ plasm components in mammalian germ cells. Developmental Biology, 2007, 301, 417-431.	0.9	12
96	Germ Cell-Specific Genes and Posttranscriptional Regulation in the Testis. , 2007, , 167-184.		0
97	A gene trap mutation of a murine homolog of theDrosophila stem cell factorPumilio results in smaller testes but does not affect litter size or fertility. Molecular Reproduction and Development, 2007, 74, 912-921.	1.0	74
98	Germ Cell Differentiation. Human Cell Culture, 2007, , 109-128.	0.1	0
99	Novel missense mutations of the Deleted-in-AZoospermia-Like (DAZL) gene in infertile women and men. Reproductive Biology and Endocrinology, 2006, 4, 40.	1.4	46
100	Modeling human germ cell development with embryonic stem cells. Regenerative Medicine, 2006, 1, 85-93.	0.8	17
101	The <i>DAZ</i> gene family and human germ cell development from embryonic stem cells. , 2006, , 323-350.		Ο
102	Genomic imprinting disorders and birth defects in pregnancies conceived with assisted reproductive technology (ART). American Journal of Obstetrics and Gynecology, 2006, 195, S15.	0.7	0
103	Evolutionary comparison of the reproductive genes, DAZL and BOULE, in primates with and without DAZ. Development Genes and Evolution, 2006, 216, 158-168.	0.4	21
104	Variants in Deleted in AZoospermia-Like (DAZL) are correlated with reproductive parameters in men and women. Human Genetics, 2006, 118, 730-740.	1.8	44
105	A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality. Genesis, 2006, 44, 515-522.	0.8	46
106	Bone Morphogenetic Proteins Induce Germ Cell Differentiation from Human Embryonic Stem Cells. Stem Cells and Development, 2006, 15, 831-837.	1.1	230
107	Interaction of the conserved meiotic regulators, BOULE (BOL) and PUMILIO-2 (PUM2). Molecular Reproduction and Development, 2005, 71, 290-298.	1.0	40
108	Human embryonic stem cell genesOCT4, NANOG, STELLAR, andGDF3 are expressed in both seminoma and breast carcinoma. Cancer, 2005, 104, 2255-2265.	2.0	406

#	Article	IF	CITATIONS
109	Identification and characterization of RNA sequences to which human PUMILIO-2 (PUM2) and deleted in Azoospermia-like (DAZL) bind. Genomics, 2005, 85, 92-105.	1.3	82
110	Recombination in men with Klinefelter syndrome. Reproduction, 2005, 130, 223-229.	1.1	34
111	Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 2004, 13, 727-739.	1.4	446
112	Defective recombination in infertile men. Human Molecular Genetics, 2004, 13, 2875-2883.	1.4	124
113	The unique transcriptome through day 3 of human preimplantation development. Human Molecular Genetics, 2004, 13, 1461-1470.	1.4	229
114	HumanSTELLAR,NANOG, andGDF3Genes Are Expressed in Pluripotent Cells and Map to Chromosome 12p13, a Hotspot for Teratocarcinoma. Stem Cells, 2004, 22, 169-179.	1.4	233
115	Unique gene expression signatures of independently-derived human embryonic stem cell lines. Human Molecular Genetics, 2004, 13, 601-608.	1.4	269
116	Feasibility of global gene expression analysis in testicular biopsies from infertile men. Molecular Reproduction and Development, 2003, 66, 403-421.	1.0	43
117	A germâ€cell odyssey: fate, survival, migration, stem cells and differentiation. EMBO Reports, 2003, 4, 352-357.	2.0	6
118	Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted) Tj ETQqQ States of America, 2003, 100, 538-543.) 0 0 rgBT 3.3	Overlock 107 211
119	Human BOULE gene rescues meiotic defects in infertile flies. Human Molecular Genetics, 2003, 12, 169-175.	1.4	111
120	Generation and in Vitro Differentiation of a Spermatogonial Cell Line. Science, 2002, 297, 392-395.	6.0	234
121	Male infertility, genetic analysis of the DAZ genes on the human Y chromosome and genetic analysis of DNA repair. Molecular and Cellular Endocrinology, 2002, 186, 231-239.	1.6	1
122	Current and future genetic screening for male infertility. Urologic Clinics of North America, 2002, 29, 767-792.	0.8	23
123	Male infertility, genetic analysis of the DAZ genes on the human Y chromosome and genetic analysis of DNA repair. Molecular and Cellular Endocrinology, 2001, 184, 41-49.	1.6	10
124	Response to varicocelectomy in oligospermic men with and without defined genetic infertility. Urology, 2001, 57, 530-535.	0.5	73
125	The DAZ Gene Family and Germ-Cell Development. , 2000, , 213-225.		1
126	Human DAZL1 Encodes a Candidate Fertility Factor in Women That Localizes to the Prenatal and Postnatal Germ Cells. Obstetrical and Gynecological Survey, 2000, 55, 154-155.	0.2	0

#	Article	IF	CITATIONS
127	Mouse Autosomal Homolog ofDAZ,a Candidate Male Sterility Gene in Humans, Is Expressed in Male Germ Cells before and after Puberty. Genomics, 1996, 35, 346-352.	1.3	143
128	Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet, The, 1996, 347, 1290-1293.	6.3	526
129	Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA–binding protein gene. Nature Genetics, 1995, 10, 383-393.	9.4	1,183
130	In vitro production of functional sperm from neonatal mouse testes. , 0, , 46-51.		0
131	Adult stem-cell population in the human testis. , 0, , 52-62.		Ο
132	Gene expression dynamics during human embryonic development. , 0, , 76-83.		0
133	Embryonic stem cells from blastomeres maintaining embryo viability. , 0, , 84-92.		Ο
134	Gamete generation from stem cells to avoid gamete donation and customized hESCs from blastomeres as the cellular insurance for the newborn: Will it ever be ethically acceptable?. , 0, , 93-101.		1
135	Adult stem cells in the human endometrium. , 0, , 115-132.		1
136	In utero hematopoietic cell transplantation. , 0, , 133-139.		0
137	Bone-marrow stroma: A source of mesenchymal stem cells for cell therapy. , 0, , 140-151.		Ο
138	The metabolic framework of pluripotent stem cells and potential mechanisms of regulation. , 0, , 164-179.		3
139	Human genes modulating primordial germ cell and gamete formation. , 0, , 224-235.		0