

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499292/publications.pdf Version: 2024-02-01

KE DEN

#	Article	IF	CITATIONS
1	An injectable and antibacterial calcium phosphate scaffold inhibiting Staphylococcus aureus and supporting stem cells for bone regeneration. Materials Science and Engineering C, 2021, 120, 111688.	7.3	19
2	Antibacterial calcium phosphate cement with human periodontal ligament stem cellâ€microbeads to enhance bone regeneration and combat infection. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 232-243.	2.7	10
3	Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex. Journal of Dentistry, 2020, 92, 103259.	4.1	41
4	Commentary on Ma et al. Resveratrol brings back happy bug's harmony. Brain, Behavior, and Immunity, 2020, 87, 197-198.	4.1	0
5	An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering. RSC Advances, 2020, 10, 40157-40170.	3.6	14
6	Grand Challenges in Musculoskeletal Pain Research: Chronicity, Comorbidity, Immune Regulation, Sex Differences, Diagnosis, and Treatment Opportunities. Frontiers in Pain Research, 2020, 1, .	2.0	3
7	Human periodontal ligament stem cell seeding on calcium phosphate cement scaffold delivering metformin for bone tissue engineering. Journal of Dentistry, 2019, 91, 103220.	4.1	23
8	Altered glial glutamate transporter expression in descending circuitry and the emergence of pain chronicity. Molecular Pain, 2019, 15, 174480691882504.	2.1	10
9	Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells. Cells, 2019, 8, 537.	4.1	144
10	Voluntary biting behavior as a functional measure of orofacial pain in mice. Physiology and Behavior, 2019, 204, 129-139.	2.1	15
11	Epigenetic Tools in Chronic Pain Studies. , 2019, , 1-48.		0
12	An Overview of Epigenetic Correlates of Human Chronic Pain Conditions. , 2019, , 183-228.		1
13	Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology / the Society of the Nippon Dental University, 2019, 107, 271-284.	1.9	52
14	NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief. Frontiers in Integrative Neuroscience, 2018, 12, 49.	2.1	15
15	Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold. Materials Science and Engineering C, 2017, 75, 895-905.	7.3	41
16	In vivo immune interactions of multipotent stromal cells underlie their long-lasting pain-relieving effect. Scientific Reports, 2017, 7, 10107.	3.3	35
17	Further observations on the behavioral and neural effects of bone marrow stromal cells in rodent pain models. Molecular Pain, 2016, 12, 174480691665804.	2.1	28
18	Activity-triggered tetrapartite neuron–glial interactions following peripheral injury. Current Opinion in Pharmacology, 2016, 26, 16-25.	3.5	38

#	Article	IF	CITATIONS
19	Epigenetic regulation of persistent pain. Translational Research, 2015, 165, 177-199.	5.0	59
20	Multipotent stromal cells for arthritic joint pain therapy and beyond. Pain Management, 2014, 4, 153-162.	1.5	8
21	Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain. Neuron, 2014, 81, 873-887.	8.1	262
22	Spinal 5-HT ₃ Receptors Mediate Descending Facilitation and Contribute to Behavioral Hypersensitivity via a Reciprocal Neuron-Glial Signaling Cascade. Molecular Pain, 2014, 10, 1744-8069-10-35.	2.1	73
23	Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain, 2013, 154, 294-305.	4.2	72
24	Transition to Persistent Orofacial Pain after Nerve Injury Involves Supraspinal Serotonin Mechanisms. Journal of Neuroscience, 2013, 33, 5152-5161.	3.6	69
25	Further evidence on a role of chemokines in injuryâ€related pain hypersensitivity. European Journal of Pain, 2012, 16, 1209-1210.	2.8	0
26	Trigeminal-Rostral Ventromedial Medulla Circuitry is Involved in Orofacial Hyperalgesia Contralateral to Tissue Injury. Molecular Pain, 2012, 8, 1744-8069-8-78.	2.1	30
27	Chemokine signaling involving chemokine (C-C motif) ligand 2 plays a role in descending pain facilitation. Neuroscience Bulletin, 2012, 28, 193-207.	2.9	31
28	Activation of group I mGlu receptors contributes to facilitation of NMDA receptor membrane current in spinal dorsal horn neurons after hind paw inflammation in rats. European Journal of Pharmacology, 2011, 670, 509-518.	3.5	20
29	Bone Marrow Stromal Cells Produce Long-Term Pain Relief in Rat Models of Persistent Pain. Stem Cells, 2011, 29, 1294-1303.	3.2	86
30	The Role Of Trigeminal Interpolaris-Caudalis Transition Zone In Persistent Orofacial Pain. International Review of Neurobiology, 2011, 97, 207-225.	2.0	73
31	Spinal 5-HT ₃ Receptor Activation Induces Behavioral Hypersensitivity via a Neuronal-Glial-Neuronal Signaling Cascade. Journal of Neuroscience, 2011, 31, 12823-12836.	3.6	25
32	Long Lasting Pain Hypersensitivity following Ligation of the Tendon of the Masseter Muscle in Rats: A Model of Myogenic Orofacial Pain. Molecular Pain, 2010, 6, 1744-8069-6-40.	2.1	41
33	Emerging role of astroglia in pain hypersensitivity. Japanese Dental Science Review, 2010, 46, 86-92.	5.1	41
34	Interactions between the immune and nervous systems in pain. Nature Medicine, 2010, 16, 1267-1276.	30.7	665
35	Molecular Depletion of Descending Serotonin Unmasks Its Novel Facilitatory Role in the Development of Persistent Pain. Journal of Neuroscience, 2010, 30, 8624-8636.	3.6	174
36	Hot Topic: [Neuron, glia and reciprocal relationships in pain processing (Guest Editor: Dr. Ke Ren)]. Open Pain Journal, 2010, 3, 1-36.	0.4	6

#	Article	IF	CITATIONS
37	Role of interleukin-1Î ² during pain and inflammation. Brain Research Reviews, 2009, 60, 57-64.	9.0	557
38	Differential Involvement of Trigeminal Transition Zone and Laminated Subnucleus Caudalis in Orofacial Deep and Cutaneous Hyperalgesia: the Effects of Interleukin-10 and Glial Inhibitors. Molecular Pain, 2009, 5, 1744-8069-5-75.	2.1	69
39	Dual Roles for Endothelin-B Receptors in Modulating Adjuvant-Induced Inflammatory Hyperalgesia in Rats. Open Pain Journal, 2009, 2, 30-40.	0.4	22
40	IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain, 2008, 135, 232-239.	4.2	164
41	Neuron–glia crosstalk gets serious: role in pain hypersensitivity. Current Opinion in Anaesthesiology, 2008, 21, 570-579.	2.0	239
42	Supraspinal Glial–Neuronal Interactions Contribute to Descending Pain Facilitation. Journal of Neuroscience, 2008, 28, 10482-10495.	3.6	272
43	Glial-Cytokine-Neuronal Interactions Underlying the Mechanisms of Persistent Pain. Journal of Neuroscience, 2007, 27, 6006-6018.	3.6	429
44	Pain Facilitation and Activity-Dependent Plasticity in Pain Modulatory Circuitry: Role of BDNF-TrkB Signaling and NMDA Receptors. Molecular Neurobiology, 2007, 35, 224-235.	4.0	106
45	Phosphorylation of Extracellular Signal-Regulated Kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation. Brain Research, 2006, 1072, 99-109.	2.2	59
46	Demonstration of a trigeminothalamic pathway to the oval paracentral intralaminar thalamic nucleus and its involvement in the processing of noxious orofacial deep inputs. Brain Research, 2006, 1097, 116-122.	2.2	6
47	Differential responses of rostral subnucleus caudalis and upper cervical dorsal horn neurons to mechanical and chemical stimulation of the parotid gland in rats. Brain Research, 2006, 1106, 123-133.	2.2	1
48	Selective distribution and function of primary afferent nociceptive inputs from deep muscle tissue to the brainstem trigeminal transition zone. Journal of Comparative Neurology, 2006, 498, 390-402.	1.6	30
49	Supraspinal Brain-Derived Neurotrophic Factor Signaling: A Novel Mechanism for Descending Pain Facilitation. Journal of Neuroscience, 2006, 26, 126-137.	3.6	166
50	Activation of trigeminal intranuclear pathway in rats with temporomandibular joint inflammation. Journal of Oral Science, 2005, 47, 65-69.	1.7	10
51	Trigeminal transition zone/rostral ventromedial medulla connections and facilitation of orofacial hyperalgesia after masseter inflammation in rats. Journal of Comparative Neurology, 2005, 493, 510-523.	1.6	75
52	Antibody array analysis of peripheral and blood cytokine levels in rats after masseter inflammation. Neuroscience Letters, 2005, 382, 128-133.	2.1	33
53	Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain, 2005, 118, 125-136.	4.2	179
54	Neonatal Local Noxious Insult Affects Gene Expression in the Spinal Dorsal Horn of Adult Rats. Molecular Pain, 2005, 1, 1744-8069-1-27.	2.1	40

#	Article	IF	CITATIONS
55	Group I Metabotropic Glutamate Receptor NMDA Receptor Coupling and Signaling Cascade Mediate Spinal Dorsal Horn NMDA Receptor 2B Tyrosine Phosphorylation Associated with Inflammatory Hyperalgesia. Journal of Neuroscience, 2004, 24, 9161-9173.	3.6	160
56	Changes in AMPA receptor phosphorylation in the rostral ventromedial medulla after inflammatory hyperalgesia in rats. Neuroscience Letters, 2004, 366, 201-205.	2.1	47
57	Brainstem mechanisms of persistent pain following injury. Journal of Orofacial Pain, 2004, 18, 299-305.	1.7	52
58	Differential rostral projections of caudal brainstem neurons receiving trigeminal input after masseter inflammation. Journal of Comparative Neurology, 2003, 465, 220-233.	1.6	46
59	Inflammation-induced upregulation of AMPA receptor subunit expression in brain stem pain modulatory circuitry. Pain, 2003, 104, 401-413.	4.2	60
60	Plasticity in Excitatory Amino Acid Receptor-Mediated Descending Pain Modulation after Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 513-520.	2.5	83
61	The medulla oblongata: The vital center for descending modulation. Journal of Pain, 2002, 3, 355-357.	1.4	3
62	Descending modulation in persistent pain: an update. Pain, 2002, 100, 1-6.	4.2	362
63	Tyrosine Phosphorylation of the NR2B Subunit of the NMDA Receptor in the Spinal Cord during the Development and Maintenance of Inflammatory Hyperalgesia. Journal of Neuroscience, 2002, 22, 6208-6217.	3.6	230
64	Activation of spinal kainate receptors after inflammation: behavioral hyperalgesia and subunit gene expression. European Journal of Pharmacology, 2002, 452, 309-318.	3.5	27
65	Selective upregulation of the flip-flop splice variants of AMPA receptor subunits in the rat spinal cord after hindpaw inflammation. Molecular Brain Research, 2001, 88, 186-193.	2.3	41
66	Long-term effects of short-lasting early local inflammatory insult. NeuroReport, 2001, 12, 399-403.	1.2	80
67	Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. NeuroReport, 2000, 11, 1915-1919.	1.2	85
68	Masseteric inflammation-induced Fos protein expression in the trigeminal interpolaris/caudalis transition zone: contribution of somatosensory–vagal–adrenal integration. Brain Research, 1999, 845, 165-175.	2.2	77
69	Persistent fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: Implications for persistent orofacial pain. , 1999, 412, 276-291.		124
70	Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation. Pain, 1999, 80, 127-141.	4.2	140
71	An Improved Method for Assessing Mechanical Allodynia in the Rat. Physiology and Behavior, 1999, 67, 711-716.	2.1	208
72	Inflammation and hyperalgesia in rats neonatally treated with capsaicin: effects on two classes of nociceptive neurons in the superficial dorsal horn. Pain, 1994, 59, 287-300.	4.2	42

#	Article	IF	CITATIONS
73	Wind-up and the NMDA receptor: from animal studies to humans. Pain, 1994, 59, 157-158.	4.2	75
74	The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain, 1992, 50, 331-344.	4.2	391
75	The intrathecal administration of excitatory amino acid receptor antagonists selectively attenuated carrageenan-induced behavioral hyperalgesia in rats. European Journal of Pharmacology, 1992, 219, 235-243.	3.5	223