Iryna A Kozeretska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499282/publications.pdf

Version: 2024-02-01

471509 477307 1,212 65 17 29 citations h-index g-index papers 72 72 72 1547 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>BRCA</i> Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. Journal of Cancer, 2019, 10, 2109-2127.	2.5	125
2	Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Molecular Biology and Evolution, 2020, 37, 2661-2678.	8.9	104
3	Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biology, 2009, 15, 1685-1693.	9.5	91
4	Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. ELife, 2021, 10, .	6.0	66
5	Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia, 2015, 761, 5-43.	2.0	60
6	BRCA1 and EZH2 cooperate in regulation of prostate cancer stem cell phenotype. International Journal of Cancer, 2019, 145, 2974-2985.	5.1	52
7	Vascular Plants of the Maritime Antarctic: Origin and Adaptation. American Journal of Plant Sciences, 2011, 02, 381-395.	0.8	51
8	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
9	Development of Antarctic herb tundra vegetation near Arctowski station, King George Island. Polar Science, 2010, 3, 254-261.	1.2	32
10	Use of Deschampsia antarctica for nest building by the kelp gull in the Argentine Islands area (maritime Antarctica) and its possible role in plant dispersal. Polar Biology, 2012, 35, 1753-1758.	1.2	32
11	Tardigrades from Larus dominicanus Lichtenstein, 1823 nests on the Argentine Islands (maritime) Tj ETQq1 1 0.7	784314 rgl	BT_19verlock
12	First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion. Journal of Pest Science, 2017, 90, 421-429.	3.7	28
13	Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Migratory relicts?. Cytology and Genetics, 2007, 41, 226-229.	0.5	27
14	Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Science, 2010, 4, 469-478.	1.2	27
15	Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster. Symbiosis, 2014, 63, 11-17.	2.3	27
16	Spread of Antarctic vegetation by the kelp gull: comparison of two maritime Antarctic regions. Polar Biology, 2018, 41, 1143-1155.	1.2	26
17	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster </i> in Europe. Virus Evolution, 2021, 7, veab031.	4.9	25
18	Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction. Biogerontology, 2016, 17, 785-803.	3.9	22

#	Article	IF	CITATIONS
19	Larval crowding results in hormesis-like effects on longevity in Drosophila: timing of eclosion as a model. Biogerontology, 2019, 20, 191-201.	3.9	20
20	Effects of Wolbachia infection on fitness-related traits in Drosophila melanogaster. Symbiosis, 2021, 83, 163-172.	2.3	18
21	Genomic analysis of <i>P</i> elements in natural populations of <i>Drosophila melanogaster</i> . PeerJ, 2017, 5, e3824.	2.0	18
22	Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in the Maritime Antarctica. Polar Science, 2007, 1, 121-128.	1.2	17
23	Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics, 2015, 49, 139-145.	0.5	17
24	Reconciling the controversial data on the effects of C60 fullerene at the organismal and molecular levels using as a model Drosophila melanogaster. Toxicology Letters, 2019, 310, 92-98.	0.8	17
25	Comparative analysis of Deschampsia antarctica Desv. population adaptability in the natural environment of the Admiralty Bay region (King George Island, maritime Antarctic). Polar Biology, 2015, 38, 1401-1411.	1.2	15
26	Mutation processes in natural populations of Drosophila melanogaster and Hirundo rustica from radiation-contaminated regions of Ukraine. Cytology and Genetics, 2008, 42, 267-271.	0.5	13
27	The frequency of BRCA1 founder mutation c.5266dupC (5382insC) in breast cancer patients from Ukraine. Hereditary Cancer in Clinical Practice, 2015, 13, 19.	1.5	13
28	Reciprocal cross differences in Drosophila melanogaster longevity: an evidence for non-genomic effects in heterosis phenomenon?. Biogerontology, 2013, 14, 153-163.	3.9	12
29	<i>Belgica antarctica</i> (Diptera: Chironomidae): A natural model organism for extreme environments. Insect Science, 2022, 29, 2-20.	3.0	11
30	Epigenetic Regulation of Longevity in Insects. Advances in Insect Physiology, 2017, , 87-114.	2.7	10
31	Role of the gene <i>Miniature</i> in <i>Drosophila</i> wing maturation. Genesis, 2012, 50, 525-533.	1.6	8
32	Colonization of a temperate-zone region by the fruit fly <i>Drosophila simulans</i> (Diptera:) Tj ETQq0 0 0) rgBT /Ov	erlock 10 Tf !
33	The influence of some environmental factors on cytological and biometric parameters and chlorophyll content of Deschampsia antarctica Desv. in the maritime Antarctic. Cytology and Genetics, 2011, 45, 170-176.	0.5	7
34	Prevalence of two BRCA1 mutations, 5382insC and 300T > G, in ovarian cancer patients from Ukraine Familial Cancer, 2017, 16, 471-476.	^{2.} 1.9	7
35	Intron length polymorphism of \hat{l}^2 -tubulin genes in Deschampsia antarctica \tilde{A} %. Desv. across the western coast of the Antarctic Peninsula. Polar Science, 2019, 19, 151-154.	1.2	7
36	Climate Factors and Wolbachia Infection Frequencies in Natural Populations of Drosophila melanogaster. Cytology and Genetics, 2020, 54, 189-198.	0.5	7

#	Article	IF	Citations
37	Infection with Wolbachia does not influence crossing-over in Drosophila melanogaster. Cytology and Genetics, 2010, 44, 239-243.	0.5	6
38	Allele frequencies for 15 STR loci in the Ukrainian population. Forensic Science International: Genetics, 2017, 29, e40-e41.	3.1	6
39	New unusualminiature-like wing mutation inDrosophila virilis. Journal of Morphology, 2004, 261, 270-275.	1.2	5
40	Long-term retainment of some chromosomal inversions in a local population of Belgica antarctica Jacobs (Diptera, Chironomidae). Czech Polar Reports, 2021, 11, 16-24.	0.6	5
41	Adaptation of the seed reproduction system to conditions of Maritime Antarctic in Deschampsia antarctica E. Desv Russian Journal of Developmental Biology, 2016, 47, 138-146.	0.5	4
42	A rapid change in P-element-induced hybrid dysgenesis status in Ukrainian populations of <i>Drosophila melanogaster </i> . Biology Letters, 2018, 14, 20180184.	2.3	4
43	External Morphology of Larvae of Belgica antarctica Jacobs, 1900 (Diptera, Chironomidae) Obtained from Two Locations in Maritime Antarctica. Insects, 2021, 12, 792.	2.2	4
44	Stability of genetic parameters in Drosophila melanogaster populations from Odesa. Cytology and Genetics, 2011, 45, 187-190.	0.5	3
45	Transient leg deformations during eclosion out of a tight confinement: A comparative study on seven species of flies, moths, ants and bees. Arthropod Structure and Development, 2017, 46, 483-495.	1.4	3
46	Late seasonal occurrence of the spotted wing pest in new invaded area. European Journal of Ecology, 2020, 6, 51-57.	0.3	3
47	Mutagenesis testing using the LacZ reporter activity of the reparation gene mus209 in Drosophila melanogaster. Cytology and Genetics, 2016, 50, 158-161.	0.5	2
48	Antarctic Terrestrial Biome—Most Poor, Extreme and Sensitive on the Planet. , 2020, , 606-622.		2
49	Characterization of Drosophila virilis Delta mutants with asymmetrical wing vein thickenings. Biopolymers and Cell, 1997, 13, 386-390.	0.4	2
50	Current status of Belgica antarctica Jacobs, 1900 (Diptera: Chironomidae) distribution by the data of Ukrainian Antarctic Expeditions. Ukrainian Antarctic Journal, 2021, , 76-93.	0.7	2
51	The miniature gene in Drosophila virilis: Maternal effect and evolutionary conservatism. Cytology and Genetics, 2007, 41, 371-375.	0.5	1
52	On the persistence of P element in cultured lineages of Drosophila melanogaster. Cytology and Genetics, 2012, 46, 238-240.	0.5	1
53	DNA methylation in Drosophila melanogaster may depend on lineage heterogeneity. Cytology and Genetics, 2012, 46, 58-61.	0.5	1
54	A high frequency of heritable changes in natural populations of Drosophila melanogaster in Ukraine. Cytology and Genetics, 2016, 50, 106-109.	0.5	1

#	Article	IF	CITATIONS
55	Allele frequencies for 15 forensic STR loci in a population sample from the Kyiv region, Ukraine. Australian Journal of Forensic Sciences, 2020, 52, 387-392.	1.2	1
56	Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster. Biopolymers and Cell, 2012, 28, 288-291.	0.4	1
57	Min-like protein of Drosophila virilis and its mutant forms: primary structure and possible functional role. Biopolymers and Cell, 2008, 24, 286-293.	0.4	1
58	Genetic interactions of Delta lokus allele with the wing development mutations in Drosopfiila virilis. 1. Delta and the mutilions causing the: wing vein reduction. Biopolymers and Cell, 1999, 15, 230-236.	0.4	1
59	Mantis Religiosa (Dyctioptera, Mantidae) Infected by Wolbachia. Vestnik Zoologii, 2011, 45, e-39-e-41.	0.7	O
60	The downregulation of the Miniature gene does not replicate Miniature loss-of-function phenotypes in Drosophila melanogaster wing to the full extent. Cytology and Genetics, 2013, 47, 124-127.	0.5	0
61	P element temperature-specific transposition: a model for possible regulation of mobile elements activity by pre-mRNA secondary structure. Cytology and Genetics, 2014, 48, 378-382.	0.5	O
62	An association of XRCC1 codon 399 polymorphism (RS25487) with bladder and prostate cancer susceptibility in the Ukrainian population. Meta Gene, 2020, 24, 100696.	0.6	0
63	The reduction of two BRCA1 gene mutations frequencies in ovarian cancer patients from Ukraine. Meta Gene, 2021, 29, 100900.	0.6	0
64	Genetic interactions of Delta locus allele with the wing development mutations in Drosophila virilis. 2. Delta and the mutations causing the wing vein excess. Biopolymers and Cell, 2000, 16, 413-419.	0.4	0
65	Hybrid dysgenesis characteristics in Drosophila virilis instability systems. Biopolymers and Cell, 2005, 21, 419-424.	0.4	O