Andrey V Dobrynin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499100/publications.pdf Version: 2024-02-01

		30070	29157
170	11,975	54	104
papers	citations	h-index	g-index
172	172	172	9631
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. Journal of the American Chemical Society, 2022, 144, 1243-1250.	13.7	24
2	Universality in Solution Properties of Polymers in Ionic Liquids. ACS Applied Polymer Materials, 2022, 4, 1966-1973.	4.4	6
3	Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules, 2022, 55, 2940-2951.	4.8	16
4	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie, 2022, 134, .	2.0	0
5	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
6	Mechanically Diverse Gels with Equal Solvent Content. ACS Central Science, 2022, 8, 845-852.	11.3	10
7	When Do Polyelectrolytes Entangle?. Macromolecules, 2021, 54, 1859-1869.	4.8	26
8	Bottlebrushes and Combs with Bimodal Distribution of the Side Chains: Diagram of States and Scattering Function. Macromolecules, 2021, 54, 1818-1828.	4.8	3
9	Scaling of Polymer Solutions as a Quantitative Tool. Macromolecules, 2021, 54, 2288-2295.	4.8	15
10	Charged Polymers: From Polyelectrolyte Solutions to Polyelectrolyte Complexes. Macromolecules, 2021, 54, 7183-7192.	4.8	7
11	Theory and Simulations of Hybrid Networks. Macromolecules, 2021, 54, 7337-7346.	4.8	3
12	Quantifying the Effect of Multivalent Ions in Polyelectrolyte Solutions. Macromolecules, 2021, 54, 9577-9586.	4.8	21
13	Quantifying Properties of Polysaccharide Solutions. ACS Polymers Au, 2021, 1, 196-205.	4.1	11
14	Independently Tuning Elastomer Softness and Firmness by Incorporating Side Chain Mixtures into Bottlebrush Network Strands. Macromolecules, 2020, 53, 9306-9312.	4.8	15
15	Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 9460-9469.	4.8	0
16	Deformation Model of Chains and Networks with Extendable Bonds. Macromolecules, 2020, 53, 10874-10881.	4.8	1
17	Microphase Segregation in the Melts of Bottlebrush Block Copolymers. Macromolecules, 2020, 53, 2582-2593.	4.8	32
18	Tissue-Mimetic Dielectric Actuators: Free-Standing, Stable, and Solvent-Free. ACS Applied Polymer Materials, 2020, 2, 1741-1745.	4.4	19

#	Article	IF	CITATIONS
19	Sierpiński Pyramids by Molecular Entanglement. Journal of the American Chemical Society, 2020, 142, 5526-5530.	13.7	13
20	Polyelectrolytes: On the doorsteps of the second century. Polymer, 2020, 202, 122714.	3.8	22
21	Elastocapillarity and rolling dynamics of solid nanoparticles on soft elastic substrates. Soft Matter, 2020, 16, 2230-2237.	2.7	3
22	Bottlebrush Bridge between Soft Gels and Firm Tissues. ACS Central Science, 2020, 6, 413-419.	11.3	56
23	Degradation of Films of Block Copolymers: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 1270-1280.	4.8	5
24	Scattering from Melts of Combs and Bottlebrushes: Molecular Dynamics Simulations and Theoretical Study. Macromolecules, 2019, 52, 5555-5562.	4.8	19
25	Nonlinear Elasticity and Swelling of Comb and Bottlebrush Networks. Macromolecules, 2019, 52, 5095-5101.	4.8	29
26	Strain-Adaptive Self-Assembled Networks of Linear-Bottlebrush-Linear Copolymers. Macromolecules, 2019, 52, 8617-8624.	4.8	15
27	Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials. Macromolecules, 2019, 52, 7531-7546.	4.8	137
28	Electrical Conductivity of Graphene–Polymer Composite Foams: A Computational Study. Macromolecules, 2019, 52, 7379-7385.	4.8	3
29	Brush-Like Polymers and Entanglements: From Linear Chains to Filaments. ACS Macro Letters, 2019, 8, 1328-1333.	4.8	11
30	Gluing Interfaces with Soft Nanoparticles. Langmuir, 2019, 35, 7277-7284.	3.5	2
31	Comb and Bottlebrush Graft Copolymers in a Melt. Macromolecules, 2019, 52, 3942-3950.	4.8	41
32	Strained Bottlebrushes in Super-Soft Physical Networks. ACS Macro Letters, 2019, 8, 530-534.	4.8	32
33	Supersoft and Hyperelastic Polymer Networks with Brushlike Strands. Macromolecules, 2018, 51, 638-645.	4.8	64
34	Surface Stress and Surface Tension in Polymeric Networks. ACS Macro Letters, 2018, 7, 116-121.	4.8	25
35	Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 359, 1509-1513.	12.6	345
36	Hierarchically Patterned Elastomeric and Thermoplastic Polymer Films through Nanoimprinting and Ultraviolet Light Exposure. ACS Omega, 2018, 3, 15426-15434.	3.5	10

#	Article	IF	CITATIONS
37	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. Macromolecules, 2018, 51, 10028-10039.	4.8	61
38	Molecular Dynamics Simulations of Surface and Interfacial Tension of Graft Polymer Melts. Langmuir, 2018, 34, 12974-12981.	3.5	17
39	Rolling Dynamics of Nanoscale Elastic Shells Driven by Active Particles. ACS Central Science, 2018, 4, 1537-1544.	11.3	2
40	From Graphene-like Sheet Stabilized Emulsions to Composite Polymeric Foams: Molecular Dynamics Simulations. Macromolecules, 2018, 51, 7360-7367.	4.8	7
41	Computationally Driven Design of Soft Materials with Tissue-like Mechanical Properties. ACS Symposium Series, 2018, , 33-50.	0.5	1
42	How To Measure Work of Adhesion and Surface Tension of Soft Polymeric Materials. Macromolecules, 2018, 51, 4059-4067.	4.8	21
43	Surface Stresses and a Force Balance at a Contact Line. Langmuir, 2018, 34, 7497-7502.	3.5	24
44	Encoding tissue mechanics in silicone. Science Robotics, 2018, 3, .	17.6	12
45	Dynamics of Dual Networks: Strain Rate and Temperature Effects in Hydrogels with Reversible H-Bonds. Macromolecules, 2017, 50, 652-659.	4.8	66
46	Entropy-driven segregation of polymer-grafted nanoparticles under confinement. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2462-2467.	7.1	38
47	Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shapeâ€Responsive Materials. Advanced Materials, 2017, 29, 1604947.	21.0	26
48	Combs and Bottlebrushes in a Melt. Macromolecules, 2017, 50, 3430-3437.	4.8	117
49	Tunable Shape Memory Polymers from α-Amino Acid-Based Poly(ester urea)s. Macromolecules, 2017, 50, 4300-4308.	4.8	27
50	Computer Simulations of Continuous 3-D Printing. Macromolecules, 2017, 50, 7794-7800.	4.8	17
51	Biodegradable Shape Memory Polymers in Medicine. Advanced Healthcare Materials, 2017, 6, 1700694.	7.6	136
52	From Adhesion to Wetting: Contact Mechanics at the Surfaces of Super-Soft Brush-Like Elastomers. ACS Macro Letters, 2017, 6, 854-858.	4.8	24
53	Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. Advanced Materials, 2017, 29, 1604209.	21.0	150
54	Mimicking biological stress–strain behaviour with synthetic elastomers. Nature, 2017, 549, 497-501.	27.8	286

#	Article	IF	CITATIONS
55	Nanoparticles as Adhesives for Soft Polymeric Materials. Macromolecules, 2016, 49, 3586-3592.	4.8	28
56	Molecular Dynamics Simulations of the Effect of Elastocapillarity on Reinforcement of Soft Polymeric Materials by Liquid Inclusions. Macromolecules, 2016, 49, 7108-7115.	4.8	12
57	Dynamics of Bottlebrush Networks. Macromolecules, 2016, 49, 8009-8017.	4.8	36
58	α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS Macro Letters, 2016, 5, 1176-1179.	4.8	32
59	Reduced Domain Size and Interfacial Width in Fast Ordering Nanofilled Block Copolymer Films by Direct Immersion Annealing. Macromolecules, 2016, 49, 8563-8571.	4.8	26
60	Programming temporal shapeshifting. Nature Communications, 2016, 7, 12919.	12.8	72
61	"Grafting-Throughâ€: Growing Polymer Brushes by Supplying Monomers through the Surface. Macromolecules, 2016, 49, 2477-2483.	4.8	35
62	Sonication-induced scission of molecular bottlebrushes: Implications of the "hairy―architecture. Polymer, 2016, 84, 178-184.	3.8	28
63	Distribution of Chains in Polymer Brushes Produced by a "Grafting From―Mechanism. Macromolecules, 2016, 49, 547-553.	4.8	36
64	Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nature Materials, 2016, 15, 183-189.	27.5	428
65	Adhesion and Wetting of Soft Nanoparticles on Textured Surfaces: Transition between Wenzel and Cassie–Baxter States. Langmuir, 2015, 31, 1693-1703.	3.5	22
66	Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams. Macromolecules, 2015, 48, 687-693.	4.8	50
67	Polymeric Droplets on Soft Surfaces: From Neumann's Triangle to Young's Law. Macromolecules, 2015, 48, 443-451.	4.8	46
68	Boron Nitride Surface Activity as Route to Composite Dielectric Films. ACS Applied Materials & Interfaces, 2015, 7, 16913-16916.	8.0	26
69	Computer Simulations of Bottle Brushes: From Melts to Soft Networks. Macromolecules, 2015, 48, 5006-5015.	4.8	80
70	Contact Mechanics of Nanoparticles: Pulling Rigid Nanoparticles from Soft, Polymeric Surfaces. Langmuir, 2015, 31, 12520-12529.	3.5	16
71	Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study. Polymers, 2014, 6, 1897-1913.	4.5	29
72	Elastocapillarity: Adhesion and Wetting in Soft Polymeric Systems. Macromolecules, 2014, 47, 6515-6521.	4.8	36

#	Article	IF	CITATIONS
73	Shapeshifting: Reversible Shape Memory in Semicrystalline Elastomers. Macromolecules, 2014, 47, 1768-1776.	4.8	171
74	Adhesion and Wetting of Nanoparticles on Soft Surfaces. Macromolecules, 2014, 47, 3203-3209.	4.8	73
75	Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping. ACS Nano, 2013, 7, 7062-7066.	14.6	171
76	A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators. Journal of Chemical Theory and Computation, 2013, 9, 73-83.	5.3	17
77	Persistence length of polyelectrolytes with precisely located charges. Soft Matter, 2013, 9, 90-98.	2.7	50
78	Nonlinear Elasticity: From Single Chain to Networks and Gels. Macromolecules, 2013, 46, 3679-3692.	4.8	88
79	Nucleation-Controlled Polymerization of Nanoparticles into Supramolecular Structures. Journal of the American Chemical Society, 2013, 135, 11417-11420.	13.7	52
80	Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Materials, 2013, 12, 735-740.	27.5	60
81	Dynamics of nanoparticle adhesion. Journal of Chemical Physics, 2012, 137, 214902.	3.0	20
82	Contact Mechanics of Nanoparticles. Langmuir, 2012, 28, 10881-10890.	3.5	39
83	Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent. Journal of the American Chemical Society, 2012, 134, 5018-5021.	13.7	73
84	Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules. Macromolecules, 2012, 45, 8880-8891.	4.8	28
85	Layer-by-Layer Assembly of Polyelectrolyte Chains and Nanoparticles on Nanoporous Substrates: Molecular Dynamics Simulations. Langmuir, 2012, 28, 1531-1538.	3.5	27
86	Molecular dynamics simulations of bottlebrush macromolecules in two dimensional polymeric melts under flow conditions. Soft Matter, 2011, 7, 2805.	2.7	3
87	Interaction between Brush Layers of Bottle-Brush Polyelectrolytes: Molecular Dynamics Simulations. Langmuir, 2011, 27, 11044-11051.	3.5	40
88	Universality in Nonlinear Elasticity of Biological and Polymeric Networks and Gels. Macromolecules, 2011, 44, 140-146.	4.8	140
89	Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules. Molecular Dynamics Simulations. Langmuir, 2011, 27, 14599-14608.	3.5	43
90	Polyelectrolytes in Salt Solutions: Molecular Dynamics Simulations. Macromolecules, 2011, 44, 5798-5816.	4.8	156

#	Article	IF	CITATIONS
91	Layer-by-Layer Assembly of Charged Nanoparticles on Porous Substrates: Molecular Dynamics Simulations. ACS Nano, 2011, 5, 3010-3019.	14.6	29
92	Chains Are More Flexible Under Tension. Macromolecules, 2010, 43, 9181-9190.	4.8	63
93	Molecular Dynamics Simulations of Grafted Layers of Bottle-Brush Polyelectrolytes. Langmuir, 2010, 26, 18374-18381.	3.5	19
94	Size Separation of Macromolecules during Spreading. Langmuir, 2010, 26, 15339-15344.	3.5	6
95	Adhesion of Nanoparticles. Langmuir, 2010, 26, 12973-12979.	3.5	81
96	Effect of the Electrostatic Interactions on Stretching of Semiflexible and Biological Polyelectrolytes. Macromolecules, 2010, 43, 2589-2604.	4.8	16
97	Detailed Molecular Dynamics Simulations of a Model NaPSS in Water. Journal of Physical Chemistry B, 2010, 114, 9391-9399.	2.6	54
98	Stabilization of fluorophore in DNA thin films. Applied Physics Letters, 2009, 95, .	3.3	13
99	Swelling of biological and semiflexible polyelectrolytes. Journal of Physics Condensed Matter, 2009, 21, 424112.	1.8	12
100	Scale-Dependent Electrostatic Stiffening in Biopolymers. Macromolecules, 2009, 42, 5851-5860.	4.8	34
101	Molecular Dynamics Simulations of Nanoimprinting Lithography. Langmuir, 2009, 25, 13244-13249.	3.5	18
102	Morphologies of Planar Polyelectrolyte Brushes in a Poor Solvent: Molecular Dynamics Simulations and Scaling Analysis. Langmuir, 2009, 25, 13158-13168.	3.5	61
103	Theory and simulations of charged polymers: From solution properties to polymeric nanomaterials. Current Opinion in Colloid and Interface Science, 2008, 13, 376-388.	7.4	250
104	Nanoparticle-Textured Surfaces from Spin Coating. Langmuir, 2008, 24, 5218-5220.	3.5	15
105	Molding Block Copolymer Micelles: A Framework for Molding of Discrete Objects on Surfaces. Langmuir, 2008, 24, 12671-12679.	3.5	9
106	Rouse Dynamics of Polyelectrolyte Solutions:  Molecular Dynamics Study. Macromolecules, 2007, 40, 7671-7679.	4.8	43
107	Necklace Globule and Counterion Condensation. Macromolecules, 2007, 40, 7695-7706.	4.8	68
108	Molecular Dynamics Simulations of Polyelectrolyte Brushes:  From Single Chains to Bundles of Chains. Langmuir, 2007, 23, 12716-12728.	3.5	81

#	Article	IF	CITATIONS
109	Combined Effect of Spin Speed and Ionic Strength on Polyelectrolyte Spin Assembly. Langmuir, 2007, 23, 12589-12597.	3.5	36
110	A Model of Polymeric Nanopropulsion Engine. Macromolecules, 2007, 40, 5171-5175.	4.8	3
111	Flory Theorem for Structurally Asymmetric Mixtures. Physical Review Letters, 2007, 99, 137801.	7.8	28
112	Molecular Dynamics Simulations of Polyelectrolyte Adsorption. Langmuir, 2007, 23, 2472-2482.	3.5	104
113	Molecular Dynamics Simulations of Multilayer Polyelectrolyte Films:Â Effect of Electrostatic and Short-Range Interactions. Langmuir, 2006, 22, 9994-10002.	3.5	55
114	Molecular Dynamics Simulations of Mutilayer Films of Polyelectrolytes and Nanoparticles. Langmuir, 2006, 22, 4629-4637.	3.5	68
115	Counterion-Correlation-Induced Attraction and Necklace Formation in Polyelectrolyte Solutions:Â Theory and Simulations. Macromolecules, 2006, 39, 1920-1938.	4.8	103
116	Molecular Dynamics Simulations of Polyelectrolyteâ^'Polyampholyte Complexes. Effect of Solvent Quality and Salt Concentration. Journal of Physical Chemistry B, 2006, 110, 24652-24665.	2.6	53
117	Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes. Macromolecules, 2006, 39, 9519-9527.	4.8	63
118	Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, 2005, 30, 1049-1118.	24.7	1,268
119	Polymer confinement and bacterial gliding motility. European Physical Journal E, 2005, 17, 361-372.	1.6	8
120	Molecular Visualization of Conformation-Triggered Flow Instability. Physical Review Letters, 2005, 94, 237801.	7.8	28
121	Molecular Dynamics Simulations of Layer-by-Layer Assembly of Polyelectrolytes at Charged Surfaces:Â Effects of Chain Degree of Polymerization and Fraction of Charged Monomers. Langmuir, 2005, 21, 6113-6122.	3.5	51
122	Molecular Dynamics Simulations of Polyelectrolyte Multilayering on a Charged Particle. Langmuir, 2005, 21, 1118-1125.	3.5	28
123	Scaling Theory of Diblock Polyampholyte Solutions. Macromolecules, 2005, 38, 8870-8881.	4.8	83
124	Molecular Dynamics Simulations of Polyampholyteâ^'Polyelectrolyte Complexes in Solutions. Macromolecules, 2005, 38, 5300-5312.	4.8	39
125	Electrostatic Persistence Length of Semiflexible and Flexible Polyelectrolytes. Macromolecules, 2005, 38, 9304-9314.	4.8	120
126	Polyampholytes. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3513-3538.	2.1	269

#	Article	IF	CITATIONS
127	Polyelectrolyte spin assembly: Influence of ionic strength on the growth of multilayered thin films. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3654-3666.	2.1	82
128	Phase Diagram of Solutions of Associative Polymers. Macromolecules, 2004, 37, 3881-3893.	4.8	34
129	Molecular Dynamics Simulations of Electrostatic Layer-by-Layer Self-Assembly. Physical Review Letters, 2004, 93, 037801.	7.8	53
130	Molecular Simulations of Charged Polymers. , 2004, , .		1
131	Molecular Dynamics Simulations of Polyelectrolyte Solutions:Â Nonuniform Stretching of Chains and Scaling Behavior. Macromolecules, 2003, 36, 3386-3398.	4.8	85
132	Small-Angle Neutron Scattering Analysis of Blends with Very Strong Intermolecular Interactions:Â Polyamide/Ionomer Blends. Macromolecules, 2003, 36, 4404-4410.	4.8	18
133	Molecular Dynamics Simulations of Polyelectrolyte Solutions:Â Osmotic Coefficient and Counterion Condensation. Macromolecules, 2003, 36, 3399-3410.	4.8	97
134	Effect of Short-Range Interactions on Polyelectrolyte Adsorption at Charged Surfacesâ€. Journal of Physical Chemistry B, 2003, 107, 8260-8269.	2.6	54
135	Monte Carlo simulation of homopolymer chains. I. Second virial coefficient. Journal of Chemical Physics, 2003, 118, 4721-4732.	3.0	30
136	Monte Carlo simulations of polyampholyte-polyelectrolyte complexes: Effect of charge sequence and strength of electrostatic interactions. Physical Review E, 2003, 67, 061803.	2.1	28
137	Adsorption of Hydrophobic Polyelectrolytes at Oppositely Charged Surfaces. Macromolecules, 2002, 35, 2754-2768.	4.8	39
138	Adsorption of Polyelectrolytes at Oppositely Charged Surfaces. Macromolecules, 2001, 34, 3421-3436.	4.8	170
139	Structure of Adsorbed Polyampholyte Layers at Charged Objects. Macromolecules, 2001, 34, 627-639.	4.8	25
140	Adsorption Isotherms of Polyampholytes at Charged Spherical Particles. Journal of Physical Chemistry B, 2001, 105, 8917-8930.	2.6	14
141	Counterion Condensation and Phase Separation in Solutions of Hydrophobic Polyelectrolytes. Macromolecules, 2001, 34, 1964-1972.	4.8	107
142	Adsorption of a polyampholyte on a charged spherical particle. European Physical Journal E, 2001, 5, 41-49.	1.6	17
143	Effect of solvent quality on polyelectrolyte adsorption at an oppositely charged surface. Journal of Chemical Physics, 2001, 114, 8145-8153.	3.0	30
144	Polyampholyte adsorption on a charged sphere. Physical Review E, 2001, 63, 051802.	2.1	9

#	Article	IF	CITATIONS
145	Adsorption of Polyelectrolytes at an Oppositely Charged Surface. Physical Review Letters, 2000, 84, 3101-3104.	7.8	100
146	Hydrophobically Modified Polyelectrolytes in Dilute Salt-Free Solutions. Macromolecules, 2000, 33, 8097-8105.	4.8	52
147	Associations leading to formation of reversible networks and gels. Current Opinion in Colloid and Interface Science, 1999, 4, 83-87.	7.4	142
148	Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins:Â The Dependence on Cross-Link Density. Macromolecules, 1999, 32, 4867-4878.	4.8	231
149	Long-Range Multichain Adsorption of Polyampholytes on a Charged Surface. Macromolecules, 1999, 32, 5689-5700.	4.8	46
150	Hydrophobic Polyelectrolytes. Macromolecules, 1999, 32, 915-922.	4.8	140
151	Light-Scattering Study of Diblock Copolymers in Supercritical Carbon Dioxide:Â CO2Density-Induced Micellization Transition. Macromolecules, 1998, 31, 7347-7355.	4.8	78
152	Electrophoresis of polyampholytes. Journal of Chemical Physics, 1998, 108, 1234-1244.	3.0	85
153	Polyampholyte solutions between charged surfaces: Debye–Huckel theory. Journal of Chemical Physics, 1998, 109, 9172-9176.	3.0	23
154	Microphase separation transition of random copolymers in a random media. Physical Review E, 1997, 56, 750-757.	2.1	7
155	Theory of Polydisperse Multiblock Copolymers. Macromolecules, 1997, 30, 4756-4765.	4.8	48
156	Adsorption of a Polyampholyte Chain on a Charged Surface. Macromolecules, 1997, 30, 4332-4341.	4.8	84
157	Phase coexistence in random copolymers. Journal of Chemical Physics, 1997, 107, 9234-9238.	3.0	17
158	Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature, 1997, 389, 368-371.	27.8	379
159	Cascade of Transitions of Polyelectrolytes in Poor Solvents. Macromolecules, 1996, 29, 2974-2979.	4.8	424
160	Elastic Modulus and Equilibrium Swelling of Polyelectrolyte Gels. Macromolecules, 1996, 29, 398-406.	4.8	251
161	Theory of random copolymers near the Lifshitz point. Europhysics Letters, 1996, 36, 283-288.	2.0	14
162	Flory Theory of a Polyampholyte Chain. Journal De Physique II, 1995, 5, 677-695.	0.9	84

#	Article	IF	CITATIONS
163	Scaling Theory of Polyelectrolyte Solutions. Macromolecules, 1995, 28, 1859-1871.	4.8	834
164	Fluctuation Theory of Random Copolymers. Journal De Physique, I, 1995, 5, 365-377.	1.2	17
165	Glass Transition Versus Microphase Separation: a Phenomenological Replica-Field Theory for AB Copolymer Systems. Journal De Physique, I, 1995, 5, 657-669.	1.2	4
166	Fluctuation Theory of Charged AB-Random Copolymers. Journal De Physique II, 1995, 5, 1241-1253.	0.9	5
167	Dynamics of Semidilute Polyelectrolyte Solutions. Physical Review Letters, 1994, 73, 2776-2779.	7.8	184
168	A statistical theory of polydisperse block copolymer systems under weak supercrystallization. Macromolecular Symposia, 1994, 81, 253-315.	0.7	31
169	Computer-aided comparative investigation of architecture influence on block copolymer phase diagrams. Macromolecules, 1993, 26, 276-281.	4.8	106
170	Conformations of molten diblock copolymer macromolecules near the point of microphase separation transition. Macromolecules, 1992, 25, 4411-4413.	4.8	21