Thomas Tuschl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5498559/publications.pdf

Version: 2024-02-01

196 papers 82,950 citations

103 h-index 2747 192 g-index

206 all docs

206 docs citations

206 times ranked 71731 citing authors

#	Article	IF	CITATIONS
1	Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411, 494-498.	27.8	8,646
2	Identification of Novel Genes Coding for Small Expressed RNAs. Science, 2001, 294, 853-858.	12.6	4,417
3	Silencing of microRNAs in vivo with â€~antagomirs'. Nature, 2005, 438, 685-689.	27.8	3,706
4	A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell, 2007, 129, 1401-1414.	28.9	3,390
5	Human MicroRNA Targets. PLoS Biology, 2004, 2, e363.	5.6	3,253
6	Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology, 2002, 12, 735-739.	3.9	3,047
7	Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 2010, 141, 129-141.	28.9	2,604
8	A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the <i>let-7</i> Small Temporal RNA. Science, 2001, 293, 834-838.	12.6	2,450
9	RNAi. Cell, 2000, 101, 25-33.	28.9	2,421
10	Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431, 343-349.	27.8	2,226
11	MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456, 980-984.	27.8	2,111
12	A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432, 226-230.	27.8	1,932
13	Human Argonaute2 Mediates RNA Cleavage Targeted by miRNAs and siRNAs. Molecular Cell, 2004, 15, 185-197.	9.7	1,699
14	A census of human RNA-binding proteins. Nature Reviews Genetics, 2014, 15, 829-845.	16.3	1,671
15	A uniform system for microRNA annotation. Rna, 2003, 9, 277-279.	3.5	1,620
16	Identification of Virus-Encoded MicroRNAs. Science, 2004, 304, 734-736.	12.6	1,474
17	Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi. Cell, 2002, 110, 563-574.	28.9	1,309
18	A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442, 203-207.	27.8	1,303

#	Article	IF	CITATIONS
19	Identification of microRNAs of the herpesvirus family. Nature Methods, 2005, 2, 269-276.	19.0	1,073
20	The Small RNA Profile during Drosophila melanogaster Development. Developmental Cell, 2003, 5, 337-350.	7.0	866
21	miRNAs in human cancer. Journal of Pathology, 2011, 223, 102-115.	4.5	827
22	siRNAs: applications in functional genomics and potential as therapeutics. Nature Reviews Drug Discovery, 2004, 3, 318-329.	46.4	815
23	Cyclic [G(2′,5′)pA(3′,5′)p] Is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GMF Synthase. Cell, 2013, 153, 1094-1107.	'-AMP	795
24	New microRNAs from mouse and human. Rna, 2003, 9, 175-179.	3.5	776
25	Endogenous MHC Class II Processing of a Viral Nuclear Antigen After Autophagy. Science, 2005, 307, 593-596.	12.6	767
26	The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis. Current Biology, 2004, 14, 2162-2167.	3.9	758
27	Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 2005, 33, 2697-2706.	14.5	720
28	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	14.3	660
29	FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature, 2012, 492, 382-386.	27.8	656
30	MicroRNAs in Human Cancer. Advances in Experimental Medicine and Biology, 2013, 774, 1-20.	1.6	606
31	Integrative Regulatory Mapping Indicates that the RNA-Binding Protein HuR Couples Pre-mRNA Processing and mRNA Stability. Molecular Cell, 2011, 43, 327-339.	9.7	605
32	Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature, 2005, 434, 666-670.	27.8	596
33	Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes and Development, 2006, 20, 3255-3268.	5.9	589
34	Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. Rna, 2004, 10, 544-550.	3.5	536
35	Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456, 921-926.	27.8	512
36	Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12884-12889.	7.1	511

3

#	Article	IF	CITATIONS
37	Identification of Novel Argonaute-Associated Proteins. Current Biology, 2005, 15, 2149-2155.	3.9	487
38	Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 2009, 461, 754-761.	27.8	483
39	Structure of the guide-strand-containing argonaute silencing complex. Nature, 2008, 456, 209-213.	27.8	481
40	A Role for Neuronal piRNAs in the Epigenetic Control of Memory-Related Synaptic Plasticity. Cell, 2012, 149, 693-707.	28.9	474
41	Structure-Function Analysis of STING Activation by c[G(2′,5′)pA(3′,5′)p] and Targeting by Antiviral DM Cell, 2013, 154, 748-762.	IXAA 28.9	472
42	Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood, 2007, 109, 4944-4951.	1.4	471
43	The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes and Development, 2009, 23, 1327-1337.	5.9	465
44	Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 2007, 35, 2885-2892.	14.5	433
45	Sequence, Chemical, and Structural Variation of Small Interfering RNAs and Short Hairpin RNAs and the Effect on Mammalian Gene Silencing. Oligonucleotides, 2003, 13, 83-105.	4.3	419
46	MicroRNA-155 Is a Negative Regulator of Activation-Induced Cytidine Deaminase. Immunity, 2008, 28, 621-629.	14.3	410
47	Expanding small RNA interference. Nature Biotechnology, 2002, 20, 446-448.	17.5	391
48	Characterization of Small RNAs in Aplysia Reveals a Role for miR-124 in Constraining Synaptic Plasticity through CREB. Neuron, 2009, 63, 803-817.	8.1	374
49	The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development (Cambridge), 2008, 135, 1201-1214.	2.5	371
50	MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation, 2011, 124, 720-730.	1.6	358
51	Crystal Structure of A. aeolicus Argonaute, a Site-Specific DNA-Guided Endoribonuclease, Provides Insights into RISC-Mediated mRNA Cleavage. Molecular Cell, 2005, 19, 405-419.	9.7	349
52	RISC is a 5' phosphomonoester-producing RNA endonuclease. Genes and Development, 2004, 18, 975-980.	5.9	338
53	MicroRNA Sequence and Expression Analysis in Breast Tumors by Deep Sequencing. Cancer Research, 2011, 71, 4443-4453.	0.9	331
54	Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. Rna, 2008, 14, 2580-2596.	3.5	327

#	Article	IF	CITATIONS
55	RNA targets of wild-type and mutant FET family proteins. Nature Structural and Molecular Biology, 2011, 18, 1428-1431.	8.2	321
56	The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines. PLoS Pathogens, 2012, 8, e1002484.	4.7	321
57	Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4255-4260.	7.1	316
58	RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. Rna, 2011, 17, 1697-1712.	3. 5	307
59	Antisense-Mediated Depletion Reveals Essential and Specific Functions of MicroRNAs in Drosophila Development. Cell, 2005, 121, 1097-1108.	28.9	304
60	The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes and Development, 2005, 19, 1288-1293.	5.9	301
61	Viral MicroRNA Targetome of KSHV-Infected Primary Effusion Lymphoma Cell Lines. Cell Host and Microbe, 2011, 10, 515-526.	11.0	297
62	miRNA in situ hybridization in formaldehyde and EDC–fixed tissues. Nature Methods, 2009, 6, 139-141.	19.0	282
63	A single-cell survey of the human first-trimester placenta and decidua. Science Advances, 2018, 4, eaau4788.	10.3	282
64	Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1615-1628.	2.9	280
65	Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nature Immunology, 2019, 20, 915-927.	14.5	275
66	RNA Interference and Small Interfering RNAs. ChemBioChem, 2001, 2, 239-245.	2.6	271
67	On the art of identifying effective and specific siRNAs. Nature Methods, 2006, 3, 670-676.	19.0	269
68	The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. Journal of Clinical Investigation, 2009, 119, 2366-78.	8.2	243
69	Elevated Expression of the miR-17–92 Polycistron and miR-21 in Hepadnavirus-Associated Hepatocellular Carcinoma Contributes to the Malignant Phenotype. American Journal of Pathology, 2008, 173, 856-864.	3 . 8	239
70	FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology, 2011, 13, 1092-1099.	10.3	231
71	Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Structural and Molecular Biology, 2010, 17, 781-787.	8.2	229
72	PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins. Journal of Visualized Experiments, 2010, , .	0.3	220

#	Article	IF	CITATIONS
73	DGCR8-dependent microRNA biogenesis is essential for skin development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 498-502.	7.1	217
74	Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 2005, 579, 5830-5840.	2.8	214
75	Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11151-11156.	7.1	207
76	Human CLP1 Mutations Alter tRNA Biogenesis, Affecting Both Peripheral and Central Nervous System Function. Cell, 2014, 157, 636-650.	28.9	189
77	Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Research, 2007, 35, 5430-5438.	14.5	181
78	The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nature Communications, 2017, 8, 16056.	12.8	179
79	Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes and Development, 2011, 25, 2173-2186.	5.9	175
80	Strand-specific $5\hat{a}\in^2$ -O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Rna, 2008, 14, 263-274.	3.5	174
81	Absolute quantification of microRNAs by using a universal reference. Rna, 2009, 15, 2375-2384.	3.5	172
82	Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Reports, 2017, 20, 1463-1475.	6.4	171
83	Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. Journal of Clinical Investigation, 2015, 125, 681-686.	8.2	171
84	microRNAs are biomarkers of oncogenic human papillomavirus infections. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4262-4267.	7.1	168
85	Small Interfering RNAs: A Revolutionary Tool for the Analysis of Gene Function and Gene Therapy. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 158-167.	3.4	166
86	Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight, 2017, 2, .	5.0	164
87	A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. Journal of Clinical Investigation, 2014, 124, 4102-4114.	8.2	157
88	Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. Rna, 2013, 19, 613-626.	3.5	156
89	PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nature Communications, 2014, 5, 5248.	12.8	156
90	MicroRNA-Mediated Down-Regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg Cells: A Potential Pathogenetic Lesion in Hodgkin Lymphomas. American Journal of Pathology, 2008, 173, 242-252.	3.8	154

#	Article	IF	Citations
91	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	28.9	152
92	Novel MIR143â€NOTCH fusions in benign and malignant glomus tumors. Genes Chromosomes and Cancer, 2013, 52, 1075-1087.	2.8	138
93	The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. Rna, 2004, 10, 929-941.	3.5	137
94	Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nature Communications, 2019, 10, 2261.	12.8	134
95	Oligonucleotide duplexes containing 2′-amino-2′-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Research, 1994, 22, 20-24.	14.5	133
96	MicroRNA-21 in Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 805-816.	6.1	133
97	Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2019, 30, 533-545.	6.1	133
98	Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus <i>in vivo</i> . European Journal of Neuroscience, 2010, 31, 636-645.	2.6	130
99	Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11946-11955.	7.1	129
100	Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5334-E5343.	7.1	121
101	MicroRNAs MiR-17, MiR-20a, and MiR-106b Act in Concert to Modulate E2F Activity on Cell Cycle Arrest during Neuronal Lineage Differentiation of USSC. PLoS ONE, 2011, 6, e16138.	2.5	114
102	Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Plant Journal, 2011, 67, 292-304.	5.7	114
103	Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods, 2012, 58, 164-170.	3.8	114
104	DND1 maintains germline stem cells via recruitment of the CCR4–NOT complex to target mRNAs. Nature, 2017, 543, 568-572.	27.8	109
105	In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 767-772.	7.1	108
106	Small RNA Sequencing and Functional Characterization Reveals MicroRNA-143 Tumor Suppressor Activity in Liposarcoma. Cancer Research, 2011, 71, 5659-5669.	0.9	106
107	miR-375 gene dosage in pancreatic \hat{l}^2 -cells: implications for regulation of \hat{l}^2 -cell mass and biomarker development. Journal of Molecular Medicine, 2015, 93, 1159-1169.	3.9	104
108	Kruppel-like Factor 15 Is a Critical Regulator of Cardiac Lipid Metabolism. Journal of Biological Chemistry, 2014, 289, 5914-5924.	3.4	101

7

#	Article	IF	Citations
109	Discovery and Characterization of piRNAs in the Human Fetal Ovary. Cell Reports, 2015, 13, 854-863.	6.4	98
110	Structure–function studies of STAR family Quaking proteins bound to their in vivo RNA target sites. Genes and Development, 2013, 27, 928-940.	5.9	97
111	MicroRNA Sequence Profiles of Human Kidney Allografts With or Without Tubulointerstitial Fibrosis. Transplantation, 2012, 94, 1086-1094.	1.0	90
112	PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation). Methods in Enzymology, 2014, 539, 113-161.	1.0	90
113	Binding-Pocket and Lid-Region Substitutions Render Human STING Sensitive to the Species-Specific Drug DMXAA. Cell Reports, 2014, 8, 1668-1676.	6.4	87
114	Urine MicroRNA as Potential Biomarkers of Autosomal Dominant Polycystic Kidney Disease Progression: Description of miRNA Profiles at Baseline. PLoS ONE, 2014, 9, e86856.	2.5	86
115	The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Molecular Cell, 2018, 69, 622-635.e6.	9.7	86
116	Biochemical isolation of Argonaute protein complexes by Ago-APP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11841-11845.	7.1	82
117	Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block. Cardiovascular Research, 2020, 116, 1446-1457.	3.8	80
118	The G3BP1-Family-USP10 Deubiquitinase Complex Rescues Ubiquitinated 40S Subunits of Ribosomes Stalled in Translation from Lysosomal Degradation. Molecular Cell, 2020, 77, 1193-1205.e5.	9.7	78
119	Combined Characterization of microRNA and mRNA Profiles Delineates Early Differentiation Pathways of CD133+ and CD34+ Hematopoietic Stem and Progenitor Cells. Stem Cells, 2011, 29, 847-857.	3.2	77
120	Activity of hammerhead ribozymes containing nonnucleotidic linkers. Nucleic Acids Research, 1993, 21, 5600-5603.	14.5	76
121	Multicolor microRNA FISH effectively differentiates tumor types. Journal of Clinical Investigation, 2013, 123, 2694-2702.	8.2	76
122	RNA sets the standard. Nature, 2003, 421, 220-221.	27.8	67
123	<i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. Journal of Antimicrobial Chemotherapy, 2021, 76, 1874-1885.	3.0	65
124	Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. Rna, 2014, 20, 1090-1102.	3.5	64
125	Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. Genome Biology, 2014, 15, R9.	9.6	63
126	Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature, 2016, 534, 387-390.	27.8	61

#	Article	IF	Citations
127	Multimeric assembly and biochemical characterization of the Trax–translin endonuclease complex. Nature Structural and Molecular Biology, 2011, 18, 658-664.	8.2	60
128	A <i>Drosophila pasha </i> Mutant Distinguishes the Canonical MicroRNA and Mirtron Pathways. Molecular and Cellular Biology, 2009, 29, 861-870.	2.3	59
129	Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing. Methods, 2012, 58, 171-187.	3.8	55
130	A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells. Nature Immunology, 2013, 14, 749-755.	14.5	55
131	Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nature Communications, 2020, 11, 2197.	12.8	55
132	ELAVL1 Modulates Transcriptome-wide miRNA Binding in Murine Macrophages. Cell Reports, 2014, 9, 2330-2343.	6.4	54
133	Deciphering human ribonucleoprotein regulatory networks. Nucleic Acids Research, 2019, 47, 570-581.	14.5	54
134	miR-193b–Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells. Cancer Research, 2017, 77, 5728-5740.	0.9	50
135	Multi-disciplinary methods to define RNA–protein interactions and regulatory networks. Current Opinion in Genetics and Development, 2013, 23, 20-28.	3.3	49
136	Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods, 2017, 118-119, 24-40.	3.8	49
137	A Potential Protein-RNA Recognition Event along the RISC-Loading Pathway from the Structure of A. aeolicus Argonaute with Externally Bound siRNA. Structure, 2006, 14, 1557-1565.	3.3	45
138	Quantitative mass spectrometry and PAR-CLIP to identify RNA-protein interactions. Nucleic Acids Research, 2012, 40, 9897-9902.	14.5	45
139	Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies. PLoS ONE, 2016, 11, e0147249.	2.5	44
140	Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS. Quarterly Reviews of Biophysics, 2016, 49, e1.	5.7	42
141	Reprogramming of the MicroRNA Transcriptome Mediates Resistance to Rapamycin. Journal of Biological Chemistry, 2013, 288, 6034-6044.	3.4	41
142	AUF1 promotes let-7b loading on Argonaute 2. Genes and Development, 2015, 29, 1599-1604.	5.9	41
143	Translational control of ERK signaling through miRNA/4EHP-directed silencing. ELife, 2018, 7, .	6.0	41
144	Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Scientific Reports, 2020, 10, 3029.	3.3	40

#	Article	IF	CITATIONS
145	Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Communications Biology, 2022, 5, 154.	4.4	40
146	Specific RNAi Mediated Gene Knockdown in Zebrafish Cell Lines. RNA Biology, 2005, 2, 101-105.	3.1	39
147	Evaluating gastroenteropancreatic neuroendocrine tumors through microRNA sequencing. Endocrine-Related Cancer, 2019, 26, 47-57.	3.1	39
148	Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Molecular Cell, 2021, 81, 2112-2122.e7.	9.7	38
149	A genome-wide view of the expression and processing patterns of Thermus thermophilus HB8 CRISPR RNAs. Rna, 2012, 18, 783-794.	3.5	36
150	Mammalian miRNA curation through next-generation sequencing. Frontiers in Genetics, 2013, 4, 145.	2.3	36
151	The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Reports, 2019, 29, 283-300.e8.	6.4	35
152	The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nature Communications, 2016, 7, 12848.	12.8	34
153	Deep Sequencing Reveals a Novel miR-22 Regulatory Network with Therapeutic Potential in Rhabdomyosarcoma. Cancer Research, 2016, 76, 6095-6106.	0.9	30
154	RTEL1 influences the abundance and localization of TERRA RNA. Nature Communications, 2021, 12, 3016.	12.8	30
155	Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes. Nucleic Acids Research, 2017, 45, 9149-9163.	14.5	29
156	The E3 ubiquitin ligase RNF10 modifies 40S ribosomal subunits of ribosomes compromised in translation. Cell Reports, 2021, 36, 109468.	6.4	29
157	MicroRNA-206 suppresses TGF- \hat{l}^2 signalling to limit tumor growth and metastasis in lung adenocarcinoma. Cellular Signalling, 2018, 50, 25-36.	3.6	25
158	Simultaneous detection of the subcellular localization of RNAs and proteins in cultured cells by combined multicolor RNA-FISH and IF. Methods, 2017, 118-119, 101-110.	3.8	24
159	Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nature Communications, 2021, 12, 5610.	12.8	24
160	Gene Silencing with siRNA Duplexes Composed of Target-mRNA-Complementary and Partially Palindromic or Partially Complementary Single-Stranded siRNAs. RNA Biology, 2006, 3, 82-89.	3.1	23
161	Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. ELife, 2021, 10, .	6.0	23
162	Rapid Creation of Stable Mammalian Cell Lines for Regulated Expression of Proteins Using the Gateway® Recombination Cloning Technology and Flp-In T-REx® Lines. Methods in Enzymology, 2013, 529, 99-124.	1.0	22

#	Article	IF	Citations
163	Deep MicroRNA sequencing reveals downregulation of miRâ€29a in neuroblastoma central nervous system metastasis. Genes Chromosomes and Cancer, 2014, 53, 803-814.	2.8	21
164	miR-193b regulates tumorigenesis in liposarcoma cells via PDGFR, TGF \hat{l}^2 , and Wnt signaling. Scientific Reports, 2019, 9, 3197.	3.3	20
165	Efficient Differentiation of Steroidogenic and Germ-Like Cells from Epigenetically-Related iPSCs Derived from Ovarian Granulosa Cells. PLoS ONE, 2015, 10, e0119275.	2.5	19
166	New insights in the mechanism of microRNA-mediated target repression. Nature Structural and Molecular Biology, 2011, 18, 1181-1182.	8.2	18
167	Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1321-1332.	2.4	18
168	Non-reversible tissue fixation retains extracellular vesicles for in situ imaging. Nature Methods, 2019, 16, 1269-1273.	19.0	18
169	Unique micro <scp>RNA</scp> s appear at different times during the course of a delayedâ€ŧype hypersensitivity reaction in human skin. Experimental Dermatology, 2015, 24, 953-957.	2.9	17
170	PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins. Methods in Molecular Biology, 2018, 1720, 55-75.	0.9	17
171	A ribozyme selected from variants of U6 snRNA promotes 2′,5′-branch formation. Rna, 2001, 7, 29-43.	3.5	16
172	The Conserved RNA Exonuclease Rexo5 Is Required for 3′ End Maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Reports, 2017, 21, 758-772.	6.4	15
173	Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS ONE, 2022, 17, e0267704.	2.5	14
174	Multiplexed miRNA Fluorescence In Situ Hybridization for Formalin-Fixed Paraffin-Embedded Tissues. Methods in Molecular Biology, 2014, 1211, 171-187.	0.9	13
175	Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. MBio, 2017, 8, .	4.1	12
176	Characterizing and classifying neuroendocrine neoplasms through microRNA sequencing and dataÂmining. NAR Cancer, 2020, 2, zcaa009.	3.1	11
177	Classifying Lung Neuroendocrine Neoplasms through MicroRNA Sequence Data Mining. Cancers, 2020, 12, 2653.	3.7	11
178	Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. Journal of Reproductive Immunology, 2022, 151, 103624.	1.9	11
179	RNA interference by osmotic lysis of pinosomes: liposome-independent transfection of siRNAs into mammalian cells. BioTechniques, 2004, 37, 96-102.	1.8	8
180	Statistical Assessment of Depth Normalization for Small RNA Sequencing. JCO Clinical Cancer Informatics, 2020, 4, 567-582.	2.1	8

#	Article	IF	Citations
181	Longitudinal profiling of circulating miRNA during cardiac allograft rejection: a proofâ€ofâ€oncept study. ESC Heart Failure, 2021, 8, 1840-1849.	3.1	8
182	Expanding the binding specificity for RNA recognition by a PUF domain. Nature Communications, 2021, 12, 5107.	12.8	8
183	Serum MicroRNA Transcriptomics and Acute Rejection or Recurrent Hepatitis C Virus in Human Liver Allograft Recipients: A Pilot Study. Transplantation, 2022, 106, 806-820.	1.0	7
184	Single-cell RNA sequencing for the study of lupus nephritis. Lupus Science and Medicine, 2019, 6, e000329.	2.7	6
185	Nucleolin Controls Ribosome Biogenesis through Its RNA-Binding Properties. Blood, 2016, 128, 5056-5056.	1.4	6
186	Sequential development of several RTâ€qPCR tests using LNA nucleotides and dual probe technology to differentiate SARSâ€CoVâ€2 from influenza A and B. Microbial Biotechnology, 2022, 15, 1995-2021.	4.2	6
187	Empirical insights into the stochasticity of small RNA sequencing. Scientific Reports, 2016, 6, 24061.	3.3	5
188	MicroRNA-Mediated Translation Repression of PRDM1 in Hodgkin/Reed-Sternberg Cells - A Potential Pathogenetic Lesion in Hodgkin Lymphoma Blood, 2006, 108, 614-614.	1.4	4
189	Plasma microRNA Interindividual Variability in Healthy Individuals, Pregnant Women, and an Individual with a Stably Altered Neuroendocrine Phenotype. Clinical Chemistry, 2021, 67, 1676-1688.	3.2	2
190	Discriminating Neoplastic from Nonneoplastic Tissues Using an miRNA-Based Deep Cancer Classifier. American Journal of Pathology, 2021, , .	3.8	1
191	miRNA Profiling of Pediatric ALL and Non-Hodgkin Lymphomas Blood, 2005, 106, 2719-2719.	1.4	0
192	Ubiquitously Expressed Micro RNA miR-16 Is Not Mutated and Not Differentially Expressed in Patients with B-CLL Blood, 2006, 108, 496-496.	1.4	0
193	Mechanisms of small RNA mediated mammalian gene silencing. FASEB Journal, 2007, 21, A149.	0.5	0
194	Transcriptomeâ€wide Identification of the mRNA target sites of the Fragileâ€X Mental Retardation Proteins. FASEB Journal, 2009, 23, 666.2.	0.5	0
195	MicroRNA Expression in Breast Cancer Revealed by Deep Sequencing Technology. , 2013, , 233-261.		0
196	Topology preserving stratification of tissue neoplasticity using Deep Neural Maps and microRNA signatures. BMC Bioinformatics, 2022, 23, 38.	2.6	0