
Florence Gazeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5497984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of onâ€chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. View, 2022, 3, .	5.3	5
2	SERS tags derived from silver nanoparticles and aryl diazonium salts for cell Raman imaging. Nanoscale, 2022, 14, 1452-1458.	5.6	4
3	Extracellular Vesicles in Transplantation. Frontiers in Immunology, 2022, 13, 800018.	4.8	9
4	Recent advances in nonâ€plasmonic surfaceâ€enhanced Raman spectroscopy nanostructures for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1795.	6.1	5
5	Generation of Hybrid Extracellular Vesicles by Fusion with Functionalized Liposomes. Methods in Molecular Biology, 2022, , 385-396.	0.9	2
6	Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 33555-33566.	8.0	32
7	Anastomotic leak after colorectal surgery: Management by combined use of an over-the-scope-clip and a thermoresponsive gel. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101990.	1.5	0
8	Enhancing digestive fistula healing by the off-label use of a thermoresponsive vessel occluder polymer associated with esophageal stent placement: A case report. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101474.	1.5	3
9	Selfâ€Assemblies of Fe ₃ O ₄ Nanocrystals: Toward Nanoscale Precision of Photothermal Effects in the Tumor Microenvironment. Advanced Functional Materials, 2021, 31, 2006824.	14.9	35
10	Local administration of stem cell-derived extracellular vesicles in a thermoresponsive hydrogel promotes a pro-healing effect in a rat model of colo-cutaneous post-surgical fistula. Nanoscale, 2021, 13, 218-232.	5.6	25
11	Extracellular vesicles from adipose stromal cells combined with a thermoresponsive hydrogel prevent esophageal stricture after extensive endoscopic submucosal dissection in a porcine model. Nanoscale, 2021, 13, 14866-14878.	5.6	10
12	Effect of stroma on the behavior of temoporfin-loaded lipid nanovesicles inside the stroma-rich head and neck carcinoma spheroids. Journal of Nanobiotechnology, 2021, 19, 3.	9.1	18
13	Immune Reprogramming Precision Photodynamic Therapy of Peritoneal Metastasis by Scalable Stem-Cell-Derived Extracellular Vesicles. ACS Nano, 2021, 15, 3251-3263.	14.6	47
14	Tumor-Selective Immune-Active Mild Hyperthermia Associated with Chemotherapy in Colon Peritoneal Metastasis by Photoactivation of Fluorouracil–Gold Nanoparticle Complexes. ACS Nano, 2021, 15, 3330-3348.	14.6	28
15	Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials, 2021, 14, 706.	2.9	76
16	Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. ELife, 2021, 10, .	6.0	127
17	Regenerative medicine for digestive fistulae therapy: Benefits, challenges and promises of stem/stromal cells and emergent perspectives via their extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 179, 113841.	13.7	5
18	Hybrid nano―and microgels doped with photoacoustic contrast agents for cancer theranostics. View, 2021, 2, 20200176.	5.3	7

#	Article	IF	CITATIONS
19	Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Advances in Colloid and Interface Science, 2021, 294, 102479.	14.7	20
20	Technological advances towards extracellular vesicles mass production. Advanced Drug Delivery Reviews, 2021, 176, 113843.	13.7	63
21	Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Advanced Drug Delivery Reviews, 2021, 178, 113972.	13.7	36
22	Two step promotion of a hot tumor immune environment by gold decorated iron oxide nanoflowers and light-triggered mild hyperthermia. Nanoscale, 2021, 13, 18483-18497.	5.6	11
23	Technological and translational challenges for extracellular vesicle in therapy and diagnosis. Advanced Drug Delivery Reviews, 2021, 179, 114026.	13.7	2
24	Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs – EVOLVE France― Advanced Drug Delivery Reviews, 2021, 179, 114001.	13.7	42
25	Thinking Quantitatively of RNA-Based Information Transfer via Extracellular Vesicles: Lessons to Learn for the Design of RNA-Loaded EVs. Pharmaceutics, 2021, 13, 1931.	4.5	12
26	MoS2 Transformation in Biomimetic and Biological Media Revealed by In-situ Liquid Phase STEM and Ex-vivo Studies. Microscopy and Microanalysis, 2021, 27, 43-44.	0.4	0
27	Degradation of ZnGa ₂ O ₄ :Cr ³⁺ luminescent nanoparticles in lysosomal-like medium. Nanoscale, 2020, 12, 1967-1974.	5.6	23
28	Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proceedings of the United States of America, 2020, 117, 103-113.	7.1	147
29	Endocytosis-driven gold nanoparticle fractal rearrangement in cells and its influence on photothermal conversion. Nanoscale, 2020, 12, 21832-21849.	5.6	8
30	3D Magnetic Alignment of Cardiac Cells in Hydrogels. ACS Applied Bio Materials, 2020, 3, 6802-6810.	4.6	2
31	mTHPC-Loaded Extracellular Vesicles Significantly Improve mTHPC Diffusion and Photodynamic Activity in Preclinical Models. Pharmaceutics, 2020, 12, 676.	4.5	17
32	Gold-based therapy: From past to present. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22639-22648.	7.1	85
33	Intracellular Fate of Hydrophobic Nanocrystal Selfâ€Assemblies in Tumor Cells. Advanced Functional Materials, 2020, 30, 2004274.	14.9	18
34	Raman reporters derived from aryl diazonium salts for SERS encoded-nanoparticles. Chemical Communications, 2020, 56, 6822-6825.	4.1	27
35	Plasmodium falciparum sexual parasites develop in human erythroblasts and affect erythropoiesis. Blood, 2020, 136, 1381-1393.	1.4	34
36	Photothermal Depletion of Cancer-Associated Fibroblasts Normalizes Tumor Stiffness in Desmoplastic Cholangiocarcinoma. ACS Nano, 2020, 14, 5738-5753.	14.6	54

#	Article	IF	CITATIONS
37	Rational Design of Fractal Gold Nanosphere Assemblies with Optimized Photothermal Conversion Using a Quantitative Structure Property Relationship (QSPR) Approach. Journal of Physical Chemistry C, 2020, 124, 8938-8948.	3.1	10
38	Polyethyleneimine-assisted one-pot synthesis of quasi-fractal plasmonic gold nanocomposites as a photothermal theranostic agent. Nanoscale, 2019, 11, 3344-3359.	5.6	34
39	Disturbance of adhesomes by gold nanoparticles reveals a size- and cell type-bias. Biomaterials Science, 2019, 7, 389-408.	5.4	8
40	Physically-triggered nanosystems for therapy and diagnosis. Advanced Drug Delivery Reviews, 2019, 138, 1-2.	13.7	1
41	Biodegraded magnetosomes with reduced size and heating power maintain a persistent activity against intracranial U87-Luc mouse GBM tumors. Journal of Nanobiotechnology, 2019, 17, 126.	9.1	17
42	Tailored ultra-small Prussian blue-based nanoparticles for MRI imaging and combined photothermal/photoacoustic theranostics. Chemical Communications, 2019, 55, 14844-14847.	4.1	15
43	Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Advanced Drug Delivery Reviews, 2019, 138, 247-258.	13.7	82
44	Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. ACS Applied Materials & Interfaces, 2019, 11, 5727-5739.	8.0	104
45	Monitoring the dynamics of cell-derived extracellular vesicles at the nanoscale by liquid-cell transmission electron microscopy. Nanoscale, 2018, 10, 1234-1244.	5.6	28
46	Nanohybrids with Magnetic and Persistent Luminescence Properties for Cell Labeling, Tracking, In Vivo Realâ€īime Imaging, and Magnetic Vectorization. Small, 2018, 14, e1800020.	10.0	38
47	INFLAM – INFLAMmation in Brain and Vessels with Iron Nanoparticles and Cell Trafficking: A Multiscale Approach of Tissue Microenvironment, Iron Nanostructure and Iron Biotransformation. Irbm, 2018, 39, 93-102.	5.6	5
48	Physical oncology: New targets for nanomedicine. Biomaterials, 2018, 150, 87-99.	11.4	36
49	mTHPC-loaded extracellular vesicles outperform liposomal and free mTHPC formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors. Drug Delivery, 2018, 25, 1790-1801.	5.7	52
50	Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy. ACS Nano, 2018, 12, 9800-9814.	14.6	60
51	Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano, 2018, 12, 6830-6842.	14.6	276
52	Theranostic Iron Oxide Nanoparticle Cargo Defines Extracellular Vesicleâ€Dependent Modulation of Macrophage Activation and Migratory Behavior. Advanced Biology, 2018, 2, 1800079.	3.0	11
53	Challenges and Opportunities in Transmission Electron Microscopy for Revealing the Fate of Inorganic Nanomaterials in Living Beings. Microscopy and Microanalysis, 2018, 24, 1694-1695.	0.4	0
54	Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Scientific Reports, 2017, 7, 40075.	3.3	24

4

#	Article	IF	CITATIONS
55	Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway. Scientific Reports, 2017, 7, 40997.	3.3	20
56	Extracellular Vesicle Production Loaded with Nanoparticles and Drugs in a Tradeâ€off between Loading, Yield and Purity: Towards a Personalized Drug Delivery System. Advanced Biology, 2017, 1, e1700044.	3.0	28
57	Imaging and Therapeutic Potential of Extracellular Vesicles. , 2017, , 43-68.		8
58	Overcoming the tumor microenvironment: the role of nanohyperthermia. Nanomedicine, 2017, 12, 1213-1215.	3.3	7
59	Basic Principles of In Vivo Distribution, Toxicity, and Degradation of Prospective Inorganic Nanoparticles for Imaging. , 2017, , 9-41.		4
60	Nanoprobe Synthesized by Magnetotactic Bacteria, Detecting Fluorescence Variations under Dissociation of Rhodamine B from Magnetosomes following Temperature, pH Changes, or the Application of Radiation. ACS Applied Materials & Interfaces, 2017, 9, 36561-36572.	8.0	15
61	Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix. Pharmacological Research, 2017, 126, 123-137.	7.1	63
62	Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. CheM, 2017, 3, 303-322.	11.7	72
63	Nanoscale Brownian heating by interacting magnetic dipolar particles. Scientific Reports, 2017, 7, 1656.	3.3	11
64	Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small, 2017, 13, 1602030.	10.0	69
65	Tumor Stiffening, a Key Determinant of Tumor Progression, is Reversed by Nanomaterial-Induced Photothermal Therapy. Theranostics, 2017, 7, 329-343.	10.0	66
66	Designing 3D Mesenchymal Stem Cell Sheets Merging Magnetic and Fluorescent Features: When Cell Sheet Technology Meets Image-Guided Cell Therapy. Theranostics, 2016, 6, 739-751.	10.0	22
67	Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. Journal of Magnetism and Magnetic Materials, 2016, 416, 315-320.	2.3	59
68	Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomaterialia, 2016, 37, 101-110.	8.3	34
69	Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11, 280-284.	11.9	124
70	Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following γ-Fe ₂ O ₃ NPs internalization and magnetic field application. RSC Advances, 2016, 6, 15415-15423.	3.6	23
71	In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society Reviews, 2016, 45, 2440-2457.	38.1	355
72	Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97, 110-123.	10.3	65

#	Article	IF	CITATIONS
73	Monitoring Extracellular-Vesicles Dynamics at the Nanoscale by Liquid-Cell TEM. Microscopy and Microanalysis, 2016, 22, 32-33.	0.4	2
74	Design, Properties, and In Vivo Behavior of SuperÂparamagnetic Persistent Luminescence Nanohybrids. Small, 2015, 11, 2696-2704.	10.0	49
75	Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents. Journal of Physical Chemistry C, 2015, 119, 6246-6253.	3.1	14
76	Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 645-655.	3.3	118
77	Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy. Nano Letters, 2015, 15, 2574-2581.	9.1	133
78	The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano, 2015, 9, 7925-7939.	14.6	180
79	Transferrin-bearing maghemite nano-constructs for biomedical applications. Journal of Applied Physics, 2015, 117, 17A336.	2.5	16
80	Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano, 2015, 9, 10113-10124.	14.6	143
81	Magnetic hyperthermia efficiency in the cellular environment forÂdifferent nanoparticle designs. Biomaterials, 2014, 35, 6400-6411.	11.4	341
82	Covalent Functionalization of Multiâ€walled Carbon Nanotubes with a Gadolinium Chelate for Efficient <i>T</i> ₁ â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2014, 24, 7173-7186.	14.9	31
83	Design of Covalently Functionalized Carbon Nanotubes Filled with Metal Oxide Nanoparticles for Imaging, Therapy, and Magnetic Manipulation. ACS Nano, 2014, 8, 11290-11304.	14.6	96
84	Magnetically shaped cell aggregates: from granular to contractile materials. Soft Matter, 2014, 10, 5045.	2.7	17
85	Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia. Chemistry of Materials, 2014, 26, 5252-5264.	6.7	105
86	Surface decoration of catanionic vesicles with superparamagnetic iron oxide nanoparticles: a model system for triggered release under moderate temperature conditions. Physical Chemistry Chemical Physics, 2014, 16, 4077.	2.8	13
87	Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating. Small, 2014, 10, 3325-3337.	10.0	43
88	Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators―of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268-4283.	14.6	200
89	High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs. ACS Nano, 2013, 7, 7500-7512.	14.6	88
90	Revisiting MRI Contrast Properties of Nanoparticles: Beyond the Superparamagnetic Regime. Journal of Physical Chemistry C, 2013, 117, 15369-15374.	3.1	21

#	Article	IF	CITATIONS
91	Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale, 2013, 5, 11374.	5.6	84
92	Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling. Advanced Materials, 2013, 25, 2611-2616.	21.0	84
93	Nanomedicine metaphors: From war to care. Emergence of an oecological approach. Nano Today, 2013, 8, 560-565.	11.9	17
94	Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stem-Cell Differentiation and MRI Tracking (Adv. Healthcare Mater. 2/2013). Advanced Healthcare Materials, 2013, 2, 312-312.	7.6	2
95	Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation. Journal of Nanobiotechnology, 2013, 11, S7.	9.1	91
96	Realâ€ŧime highâ€resolution magnetic resonance tracking of macrophage subpopulations in a murine inflammation model: a pilot study with a commercially available cryogenic probe. Contrast Media and Molecular Imaging, 2013, 8, 193-203.	0.8	27
97	Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations. Nanoscale, 2013, 5, 4412.	5.6	57
98	Colloidal Ordered Assemblies in a Polymer Shell—A Novel Type of Magnetic Nanobeads for Theranostic Applications. Chemistry of Materials, 2013, 25, 1055-1062.	6.7	56
99	Magnetic and Photoresponsive Theranosomes: Translating Cell-Released Vesicles into Smart Nanovectors for Cancer Therapy. ACS Nano, 2013, 7, 4954-4966.	14.6	105
100	Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stem ell Differentiation and MRI Tracking. Advanced Healthcare Materials, 2013, 2, 313-325.	7.6	73
101	Biodegradation of Iron Oxide Nanocubes: High-Resolution <i>In Situ</i> Monitoring. ACS Nano, 2013, 7, 3939-3952.	14.6	233
102	Molecular Imaging Techniques: New Frontiers. , 2013, , .		1
103	Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. Contrast Media and Molecular Imaging, 2013, 8, 439-455.	0.8	34
104	Design of Biomimetic Vascular Grafts with Magnetic Endothelial Patterning. Cell Transplantation, 2013, 22, 2105-2118.	2.5	28
105	Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry. Journal of Visualized Experiments, 2013, , e50566.	0.3	9
106	Magnetic vesicles as MRI-trackable biogenic nanovectors. , 2012, , .		0
107	Adipose Tissue Macrophages: MR Tracking to Monitor Obesity-associated Inflammation. Radiology, 2012, 263, 786-793.	7.3	26
108	Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention?. Cell Transplantation, 2012, 21, 679-691.	2.5	41

#	Article	IF	CITATIONS
109	Imaging and Manipulating Magnetically Labelled Cells. , 2012, , 353-368.		0
110	Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice. Radiology, 2012, 263, 169-178.	7.3	38
111	Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents. ACS Nano, 2012, 6, 10935-10949.	14.6	341
112	Ultra Magnetic Liposomes for MR Imaging, Targeting, and Hyperthermia. Langmuir, 2012, 28, 11834-11842.	3.5	177
113	Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake. ACS Nano, 2012, 6, 2665-2678.	14.6	154
114	Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia. Journal of Physical Chemistry C, 2012, 116, 15702-15712.	3.1	240
115	Intercellular Carbon Nanotube Translocation Assessed by Flow Cytometry Imaging. Nano Letters, 2012, 12, 4830-4837.	9.1	39
116	Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors. Nanomedicine, 2012, 7, 1713-1727.	3.3	35
117	Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano, 2012, 6, 3080-3091.	14.6	638
118	How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media and Molecular Imaging, 2012, 7, 373-383.	0.8	59
119	Cellular Transfer of Magnetic Nanoparticles Via Cell Microvesicles: Impact on Cell Tracking by Magnetic Resonance Imaging. Pharmaceutical Research, 2012, 29, 1392-1403.	3.5	41
120	Modeling magnetic nanoparticle dipole-dipole interactions inside living cells. Physical Review B, 2011, 84, .	3.2	42
121	Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale, 2011, 3, 4402.	5.6	57
122	Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab on A Chip, 2011, 11, 1902.	6.0	130
123	Different localizations of hydrophobic magnetic nanoparticles within vesicles trigger their efficiency as magnetic nano-heaters. Soft Matter, 2011, 7, 6248.	2.7	18
124	Multifunctional nanovectors based on magnetic nanoparticles coupled with biological vesicles or synthetic liposomes. Journal of Materials Chemistry, 2011, 21, 14387.	6.7	14
125	Correlating Magneto-Structural Properties to Hyperthermia Performance of Highly Monodisperse Iron Oxide Nanoparticles Prepared by a Seeded-Growth Route. Chemistry of Materials, 2011, 23, 4170-4180.	6.7	134
126	Antiâ€Estrogenâ€Loaded Superparamagnetic Liposomes for Intracellular Magnetic Targeting and Treatment of Breast Cancer Tumors. Advanced Functional Materials, 2011, 21, 83-92.	14.9	61

#	Article	IF	CITATIONS
127	Doxorubicin Release Triggered by Alginate Embedded Magnetic Nanoheaters: A Combined Therapy. Advanced Materials, 2011, 23, 787-790.	21.0	169
128	Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011, 32, 3988-3999.	11.4	303
129	De la cellule au tissu : le magnétisme auxiliaire de la biomédecine. , 2011, , 6-10.	0.1	3
130	Intracellular Confinement of Magnetic Nanoparticles by Living Cells: Impact for Imaging and Therapeutic Applications. AIP Conference Proceedings, 2011, , .	0.4	1
131	Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials, 2010, 31, 1586-1595.	11.4	51
132	The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials, 2010, 31, 7061-7069.	11.4	52
133	Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information. Nanomedicine, 2010, 5, 727-738.	3.3	18
134	Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles. Future Medicinal Chemistry, 2010, 2, 397-408.	2.3	31
135	Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology, 2010, 21, 395103.	2.6	169
136	High-Resolution 1.5-Tesla Magnetic Resonance Imaging for Tissue-Engineered Constructs: A Noninvasive Tool to Assess Three-Dimensional Scaffold Architecture and Cell Seeding. Tissue Engineering - Part C: Methods, 2010, 16, 185-200.	2.1	38
137	The MRI assessment of intraurethrally – delivered muscle precursor cells using anionic magnetic nanoparticles. Biomaterials, 2009, 30, 6920-6928.	11.4	18
138	Magnetic nanoparticles: Internal probes and heaters within living cells. Journal of Magnetism and Magnetic Materials, 2009, 321, 671-674.	2.3	28
139	Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. European Radiology, 2009, 19, 1087-1096.	4.5	28
140	Formation of a Three-Dimensional Multicellular Assembly Using Magnetic Patterning. Langmuir, 2009, 25, 2348-2354.	3.5	55
141	Reactivity of the monocyte/macrophage system to superparamagnetic anionic nanoparticles. Journal of Materials Chemistry, 2009, 19, 6373.	6.7	51
142	Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. European Biophysics Journal, 2008, 37, 223-228.	2.2	298
143	Intracellular Trafficking of Magnetic Nanoparticles to Design Multifunctional Biovesicles. Small, 2008, 4, 577-582.	10.0	56
144	In vivo single cell detection of tumorâ€infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magnetic Resonance in Medicine, 2008, 60, 1292-1297.	3.0	52

#	Article	IF	CITATIONS
145	Universal cell labelling with anionic magnetic nanoparticles. Biomaterials, 2008, 29, 3161-3174.	11.4	308
146	In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system—initial experience in mice. European Radiology, 2008, 18, 59-69.	4.5	15
147	Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine, 2008, 3, 831-844.	3.3	225
148	Magnetically induced hyperthermia: size-dependent heating power of γ-Fe ₂ O ₃ nanoparticles. Journal of Physics Condensed Matter, 2008, 20, 204133.	1.8	131
149	Linear patterning of magnetically labeled <i>Dictyostelium</i> cells to display confined development. Journal of Physics Condensed Matter, 2008, 20, 204149.	1.8	0
150	Aortic Aneurysms in a Rat Model: In Vivo MR Imaging of Endovascular Cell Therapy. Radiology, 2008, 246, 185-192.	7.3	21
151	Magnetic Targeting of Nanometric Magnetic Fluid–loaded Liposomes to Specific Brain Intravascular Areas: A Dynamic Imaging Study in Mice. Radiology, 2007, 244, 439-448.	7.3	50
152	Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials, 2007, 28, 3797-3806.	11.4	82
153	Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. Journal of the American Chemical Society, 2007, 129, 2628-2635.	13.7	938
154	Tumour Cell Toxicity of Intracellular Hyperthermia Mediated by Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 2933-2937.	0.9	66
155	Magnetic Targeting of Rhodamine-Labeled Superparamagnetic Liposomes to Solid Tumors: In Vivo Tracking by Fibered Confocal Fluorescence Microscopy. Molecular Imaging, 2007, 6, 7290.2007.00004.	1.4	33
156	Signaling through the phosphatidylinositol 3-kinase regulates mechanotaxis induced by local low magnetic forces in Entamoeba histolytica. Journal of Biomechanics, 2007, 40, 64-77.	2.1	21
157	Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Molecular Imaging, 2007, 6, 140-6.	1.4	9
158	Phenotypic Study of Human Gingival Fibroblasts Labeled With Superparamagnetic Anionic Nanoparticles. Journal of Periodontology, 2006, 77, 238-247.	3.4	24
159	Fluorescence-Modified Superparamagnetic Nanoparticles: Intracellular Uptake and Use in Cellular Imaging. Langmuir, 2006, 22, 5385-5391.	3.5	198
160	Magnetic Targeting of Magnetoliposomes to Solid Tumors with MR Imaging Monitoring in Mice: Feasibility. Radiology, 2006, 239, 415-424.	7.3	135
161	Controlled Clustering of Superparamagnetic Nanoparticles Using Block Copolymers: Design of New Contrast Agents for Magnetic Resonance Imaging. Journal of the American Chemical Society, 2006, 128, 1755-1761.	13.7	356
162	Single-cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast Media and Molecular Imaging, 2006, 1, 165-174.	0.8	44

#	Article	IF	CITATIONS
163	In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell-based anticancer therapy. Magnetic Resonance in Medicine, 2006, 56, 498-508.	3.0	88
164	Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles. European Radiology, 2005, 15, 1369-1377.	4.5	26
165	Generation of Superparamagnetic Liposomes Revealed as Highly Efficient MRI Contrast Agents for in Vivo Imaging. Journal of the American Chemical Society, 2005, 127, 10676-10685.	13.7	416
166	Iron Oxide Nanoparticle–labeled Rat Smooth Muscle Cells: Cardiac MR Imaging for Cell Graft Monitoring and Quantitation. Radiology, 2005, 235, 959-967.	7.3	86
167	T-Cell Homing to the Pancreas in Autoimmune Mouse Models of Diabetes: In Vivo MR Imaging. Radiology, 2005, 236, 579-587.	7.3	44
168	In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5-T clinical MRI system. Magnetic Resonance in Medicine, 2004, 52, 73-79.	3.0	40
169	Glucose-Receptor MR Imaging of Tumors: Study in Mice with PEGylated Paramagnetic Niosomes. Radiology, 2004, 231, 135-142.	7.3	88
170	Passive versus active local microrheology in mammalian cells and amoebae. Magnetohydrodynamics, 2004, 40, 321-336.	0.3	1
171	Deformation of intracellular endosomes under a magnetic field. European Biophysics Journal, 2003, 32, 655-660.	2.2	52
172	Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials, 2003, 24, 1001-1011.	11.4	621
173	Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions. Journal of Physics Condensed Matter, 2003, 15, S1305-S1334.	1.8	44
174	Interaction of Anionic Superparamagnetic Nanoparticles with Cells:  Kinetic Analyses of Membrane Adsorption and Subsequent Internalization. Langmuir, 2002, 18, 8148-8155.	3.5	258
175	Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. European Biophysics Journal, 2002, 31, 118-125.	2.2	182
176	Magnetic resonance of nanoparticles in a ferrofluid: evidence of thermofluctuational effects. Journal of Magnetism and Magnetic Materials, 1999, 202, 535-546.	2.3	98
177	Ferromagnetic resonance in ferrite nanoparticles with uniaxial surface anisotropy. Journal of Applied Physics, 1999, 85, 6642-6647.	2.5	66
178	Magnetic resonance of ferrite nanoparticles:. Journal of Magnetism and Magnetic Materials, 1998, 186, 175-187.	2.3	241
179	Energy conversion in ferrofluids: Magnetic nanoparticles as motors or generators. Physical Review E, 1997, 56, 614-618.	2.1	71
180	Quasi-elastic neutron scattering on γ-Fe 2 O 3 nanoparticles. Europhysics Letters, 1997, 40, 575-580.	2.0	74

#	Article	IF	CITATIONS
181	Magnetic fluid under vorticity: Free precession decay of magnetization and optical anisotropy. Physical Review E, 1996, 54, 3672-3675.	2.1	2
182	Magnetic susceptibility in a rotating ferrofluid: Magneto-vortical resonance. Europhysics Letters, 1996, 35, 609-614.	2.0	27