Colin C Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/549691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 2011, 1, 487-495.	9.4	725
2	Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nature Genetics, 2015, 47, 736-745.	21.4	395
3	Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell, 2019, 176, 831-843.e22.	28.9	317
4	High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development. Cancer Research, 2014, 74, 1272-1283.	0.9	304
5	The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discovery, 2017, 7, 54-71.	9.4	285
6	The Placental Gene PEG10 Promotes Progression of Neuroendocrine Prostate Cancer. Cell Reports, 2015, 12, 922-936.	6.4	216
7	From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. Journal of Pathology, 2012, 227, 286-297.	4.5	161
8	Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Advanced Drug Delivery Reviews, 2014, 79-80, 222-237.	13.7	146
9	SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition. European Urology, 2017, 71, 68-78.	1.9	136
10	The Proteome of Primary Prostate Cancer. European Urology, 2016, 69, 942-952.	1.9	122
11	Polycomb-mediated silencing in neuroendocrine prostate cancer. Clinical Epigenetics, 2015, 7, 40.	4.1	93
12	BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Medicine, 2019, 11, 8.	8.2	88
13	HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology. Genome Research, 2017, 27, 1573-1588.	5.5	78
14	Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer. Genome Biology, 2014, 15, 426.	8.8	71
15	Stromal Gene Expression is Predictive for Metastatic Primary Prostate Cancer. European Urology, 2018, 73, 524-532.	1.9	60
16	Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clinical Epigenetics, 2016, 8, 16.	4.1	55
17	The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. GigaScience, 2018, 7, .	6.4	54
18	The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 7349.	12.8	51

COLIN C COLLINS

#	Article	IF	CITATIONS
19	Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Research, 2018, 78, 2691-2704.	0.9	48
20	Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget, 2017, 8, 18949-18967.	1.8	47
21	Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell International, 2019, 19, 10.	4.1	31
22	Enhanced anticancer activity of a combination of docetaxel and Aneustat (OMN54) in a patientâ€derived, advanced prostate cancer tissue xenograft model. Molecular Oncology, 2014, 8, 311-322.	4.6	28
23	Switching off malignant mesothelioma: exploiting the hypoxic microenvironment. Genes and Cancer, 2017, 7, 340-354.	1.9	20
24	Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. European Urology, 2018, 73, 949-960.	1.9	19
25	Characterization of transcriptomic signature of primary prostate cancer analogous to prostatic small cell neuroendocrine carcinoma. International Journal of Cancer, 2019, 145, 3453-3461.	5.1	18
26	Structural variation and fusion detection using targeted sequencing data from circulating cell free DNA. Nucleic Acids Research, 2019, 47, e38-e38.	14.5	17
27	Conditionally Reprogrammed Cells from Patient-Derived Xenograft to Model Neuroendocrine Prostate Cancer Development. Cells, 2020, 9, 1398.	4.1	13
28	Combinatorial Detection of Conserved Alteration Patterns for Identifying Cancer Subnetworks. GigaScience, 2019, 8, .	6.4	9
29	Identification of conserved evolutionary trajectories in tumors. Bioinformatics, 2020, 36, i427-i435.	4.1	9
30	Immune-focused multi-omics analysis of prostate cancer: leukocyte Ig-Like receptors are associated with disease progression. Oncolmmunology, 2020, 9, 1851950.	4.6	8
31	A Meta-Analysis Approach for Characterizing Pan-Cancer Mechanisms of Drug Sensitivity in Cell Lines. PLoS ONE, 2014, 9, e103050.	2.5	7
32	<scp>GRB10</scp> sustains <scp>AR</scp> activity by interacting with <scp>PP2A</scp> in prostate cancer cells. International Journal of Cancer, 2021, 148, 469-480.	5.1	3
33	Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells, 2022, 11, 1550.	4.1	Ο