Mauro Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496244/publications.pdf Version: 2024-02-01

		117625	123424
124	4,513	34	61
papers	citations	h-index	g-index
131	131	131	3550
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tolerance landscapes in thermal ecology. Functional Ecology, 2014, 28, 799-809.	3.6	272
2	Genetic polymorphism of alcohol dehydrogenase in europeans: TheADH2*2 allele decreases the risk for alcoholism and is associated withADH3*1. Hepatology, 2000, 31, 984-989.	7.3	230
3	Evolution before genes. Biology Direct, 2012, 7, 1; discussion 1.	4.6	225
4	Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Functional Ecology, 2011, 25, 111-121.	3.6	214
5	Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease?. Hepatology, 2006, 43, 352-361.	7.3	189
6	Heritability of human cranial dimensions: comparing the evolvability of different cranial regions. Journal of Anatomy, 2009, 214, 19-35.	1.5	165
7	Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1470-1475.	7.1	155
8	Real ribozymes suggest a relaxed error threshold. Nature Genetics, 2005, 37, 1008-1011.	21.4	119
9	The evolutionary history of Drosophila buzzatii. XIV. Larger flies mate more often in nature. Heredity, 1988, 61, 255-262.	2.6	118
10	Genome-wide evolutionary response to a heat wave in <i>Drosophila</i> . Biology Letters, 2013, 9, 20130228.	2.3	92
11	Making sense of heat tolerance estimates in ectotherms: lessons from <i>Drosophila</i> . Functional Ecology, 2011, 25, 1169-1180.	3.6	91
12	PERVASIVE GENETIC INTEGRATION DIRECTS THE EVOLUTION OF HUMAN SKULL SHAPE. Evolution; International Journal of Organic Evolution, 2012, 66, 1010-1023.	2.3	86
13	Predicting temperature mortality and selection in natural <i>Drosophila</i> populations. Science, 2020, 369, 1242-1245.	12.6	85
14	The evolutionary history of Drosophila buzzatii. XX. Positive phenotypic covariance between field adult fitness components and body size. Journal of Evolutionary Biology, 1992, 5, 403-422.	1.7	83
15	Gene–environment interaction for body size and larval density in Drosophila melanogaster: an investigation of effects on development time, thorax length and adult sex ratio. Heredity, 1994, 72, 515-521.	2.6	83
16	Genetic polymorphisms of ADH2, ADH3, CYP4502E1 Dra-I and Pst-I, and ALDH2 in Spanish men: lack of association with alcoholism and alcoholic liver disease. Journal of Hepatology, 2004, 41, 744-750.	3.7	78
17	DENSITYâ€DEPENDENT NATURAL SELECTION IN <i>DROSOPHILA</i> : EVOLUTION OF GROWTH RATE AND BODY SIZE. Evolution; International Journal of Organic Evolution, 1997, 51, 420-432.	2.3	77
18	Heat tolerance in <i>Drosophila subobscura</i> along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. Evolution; International Journal of Organic Evolution, 2015, 69, 2721-2734.	2.3	73

#	Article	IF	CITATIONS
19	Temperatureâ€Related Genetic Changes in Laboratory Populations of Drosophila subobscura: Evidence against Simple Climaticâ€Based Explanations for Latitudinal Clines. American Naturalist, 2005, 165, 258-273.	2.1	69
20	BIOCHEMICAL DIFFERENCES BETWEEN PRODUCTS OF THE <i>Adh</i> LOCUS IN DROSOPHILA. Genetics, 1980, 95, 1013-1022.	2.9	69
21	Density-Dependent Natural Selection in Drosophila: Evolution of Growth Rate and Body Size. Evolution; International Journal of Organic Evolution, 1997, 51, 420.	2.3	64
22	"Living―Under the Challenge of Information Decay: The Stochastic Corrector Model vs. Hypercycles. Journal of Theoretical Biology, 2002, 217, 167-181.	1.7	64
23	Evolutionary Potential and Requirements for Minimal Protocells. , 0, , 167-211.		64
24	CLINAL PATTERNS OF CHROMOSOMAL INVERSION POLYMORPHISMS IN <i>DROSOPHILA SUBOBSCURA</i> ARE PARTLY ASSOCIATED WITH THERMAL PREFERENCES AND HEAT STRESS RESISTANCE. Evolution; International Journal of Organic Evolution, 2010, 64, 385-397.	2.3	60
25	Thermal evolution of gene expression profiles in Drosophila subobscura. BMC Evolutionary Biology, 2007, 7, 42.	3.2	58
26	Climate change and chromosomal inversions in Drosophila subobscura. Climate Research, 2010, 43, 103-114.	1.1	55
27	Genetics and geometry of canalization and developmental stability in Drosophila subobscura. BMC Evolutionary Biology, 2005, 5, 7.	3.2	52
28	Swift laboratory thermal evolution of wing shape (but not size) in Drosophila subobscura and its relationship with chromosomal inversion polymorphism. Journal of Evolutionary Biology, 2004, 17, 841-855.	1.7	51
29	On the use of tester stocks to predict the competitive ability of genotypes. Heredity, 1992, 69, 489-495.	2.6	45
30	ANTAGONISTIC PLEIOTROPIC EFFECT OF SECOND-CHROMOSOME INVERSIONS ON BODY SIZE AND EARLY LIFE-HISTORY TRAITS IN <i>DROSOPHILA BUZZATII</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 144-154.	2.3	41
31	Coexistence and error propagation in pre-biotic vesicle models: A group selection approach. Journal of Theoretical Biology, 2006, 239, 247-256.	1.7	41
32	Hsp70 protein levels and thermotolerance in <i>Drosophila subobscura</i> : a reassessment of the thermal coâ€adaptation hypothesis. Journal of Evolutionary Biology, 2012, 25, 691-700.	1.7	41
33	The Evolutionary History of Drosophila buzzatii. XXXV. Inversion Polymorphism and Nucleotide Variability in Different Regions of the Second Chromosome. Molecular Biology and Evolution, 2003, 20, 931-944.	8.9	39
34	From nature to the laboratory: the impact of founder effects on adaptation. Journal of Evolutionary Biology, 2012, 25, 2607-2622.	1.7	38
35	Estimating the mode of inheritance in genetic association studies of qualitative traits based on the degree of dominance index. BMC Medical Research Methodology, 2011, 11, 171.	3.1	37
36	Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits?. Ecology and Evolution, 2012, 2, 2866-2880.	1.9	36

#	Article	IF	CITATIONS
37	Thermal evolution of pre-adult life history traits, geometric size and shape, and developmental stability in Drosophila subobscura. Journal of Evolutionary Biology, 2006, 19, 2006-2021.	1.7	35
38	Polymorphisms of alcohol-metabolizing enzymes and the risk for alcoholism and alcoholic liver disease in Caucasian Spanish women. Drug and Alcohol Dependence, 2006, 84, 195-200.	3.2	34
39	Grand Views of Evolution. Trends in Ecology and Evolution, 2017, 32, 324-334.	8.7	34
40	Vanishing Chromosomal Inversion Clines in <i>Drosophila subobscura</i> from Chile: Is Behavioral Thermoregulation to Blame?. American Naturalist, 2013, 182, 249-259.	2.1	33
41	Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment. Evolution; International Journal of Organic Evolution, 2016, 70, 195-206.	2.3	33
42	Laboratory Selection Quickly Erases Historical Differentiation. PLoS ONE, 2014, 9, e96227.	2.5	33
43	Evolutionary potential of thermal preference and heat tolerance in <i>Drosophila subobscura</i> . Journal of Evolutionary Biology, 2019, 32, 818-824.	1.7	32
44	The Evolutionary History of Drosophila buzzatii. XIII. Random Differentiation as a Partial Explanation of Chromosomal Variation in a Structured Natural Population. American Naturalist, 1989, 133, 183-197.	2.1	31
45	Recombination in Primeval Genomes: A Step Forward but Still a Long Leap from Maintaining a Sizable Genome. Journal of Molecular Evolution, 2004, 59, 507-519.	1.8	31
46	SYMMETRY BREAKING IN INTERSPECIFIC DROSOPHILA HYBRIDS IS NOT DUE TO DEVELOPMENTAL NOISE. Evolution; International Journal of Organic Evolution, 2006, 60, 746-761.	2.3	31
47	FLUCTUATING ASYMMETRY IS NONGENETICALLY RELATED TO MATING SUCCESS IN DROSOPHILA BUZZATII. Evolution; International Journal of Organic Evolution, 2001, 55, 2248-2256.	2.3	28
48	Genetic constraints for thermal coadaptation in Drosophila subobscura. BMC Evolutionary Biology, 2010, 10, 363.	3.2	27
49	How much can history constrain adaptive evolution? A realâ€time evolutionary approach of inversion polymorphisms in <i>Drosophila subobscura</i> . Journal of Evolutionary Biology, 2014, 27, 2727-2738.	1.7	27
50	Sexual selection on chromosomal polymorphism in Drosophila subobscura. Heredity, 1986, 57, 161-169.	2.6	24
51	Evolution of total net fitness in thermal lines: <i>Drosophila subobscura</i> likes it â€~warm'. Journal of Evolutionary Biology, 2007, 20, 2361-2370.	1.7	24
52	Toward a Physical Map of <i>Drosophila buzzatii</i> : Use of Randomly Amplified Polymorphic DNA Polymorphisms and Sequence-Tagged Site Landmarks. Genetics, 2000, 156, 1797-1816.	2.9	23
53	Origin of sex revisited. Origins of Life and Evolution of Biospheres, 2003, 33, 405-432.	1.9	21
54	Quantitative-genetic analysis of wing form and bilateral asymmetry in isochromosomal lines ofDrosophila subobscura using Procrustes methods. Journal of Genetics, 2003, 82, 95-113.	0.7	21

#	Article	IF	CITATIONS
55	Primordial evolvability: Impasses and challenges. Journal of Theoretical Biology, 2015, 381, 29-38.	1.7	21
56	Predictable phenotypic, but not karyotypic, evolution of populations with contrasting initial history. Scientific Reports, 2017, 7, 913.	3.3	20
57	The contribution of genetic variants of SLC2A1 gene in T2DM and T2DM-nephropathy: association study and meta-analysis. Renal Failure, 2018, 40, 561-576.	2.1	20
58	The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations. Heredity, 1995, 74, 188-199.	2.6	19
59	Antagonistic Pleiotropic Effect of Second-Chromosome Inversions on Body Size and Early Life-History Traits in Drosophila buzzatii. Evolution; International Journal of Organic Evolution, 1998, 52, 144.	2.3	19
60	Genetics of wing size asymmetry inDrosophila buzzatii. Journal of Evolutionary Biology, 2002, 15, 720-734.	1.7	19
61	Contrasting patterns of phenotypic variation linked to chromosomal inversions in native and colonizing populations of <i>Drosophila subobscura</i> . Journal of Evolutionary Biology, 2010, 23, 112-123.	1.7	19
62	Measurement error in heat tolerance assays. Journal of Thermal Biology, 2012, 37, 432-437.	2.5	18
63	The evolutionary history of Drosophila buzzatii. XXV. Random mating in nature. Heredity, 1992, 68, 373-379.	2.6	17
64	Recombination Load in a Chromosomal Inversion Polymorphism of Drosophila subobscura. Genetics, 2009, 181, 803-809.	2.9	17
65	Selfishness versus functional cooperation in a stochastic protocell model. Journal of Theoretical Biology, 2010, 267, 605-613.	1.7	17
66	Phenotypic plasticity, the Baldwin effect, and the speeding up of evolution: The computational roots of an illusion. Journal of Theoretical Biology, 2015, 371, 127-136.	1.7	17
67	The evolutionary history of Drosophila buzzatii. XXXIII. Are Opuntia hosts a selective factor for the inversion polymorphism?. Heredity, 1996, 77, 500-508.	2.6	16
68	Chromosomal inversions promote genomic islands of concerted evolution of <i>Hsp70</i> genes in the <i>Drosophila subobscura</i> species subgroup. Molecular Ecology, 2019, 28, 1316-1332.	3.9	16
69	Beneficial developmental acclimation in reproductive performance under cold but not heat stress. Journal of Thermal Biology, 2020, 90, 102580.	2.5	16
70	High developmental temperature leads to low reproduction despite adult temperature. Journal of Thermal Biology, 2021, 95, 102794.	2.5	16
71	Selection at the Adh locus inDrosophila melanogaster: Adult survivorship-mortality in response to ethanol. Experientia, 1981, 37, 463-464.	1.2	15
72	Evolution of the Division of Labor between Genes and Enzymes in the RNA World. PLoS Computational Biology, 2014, 10, e1003936.	3.2	15

#	Article	IF	CITATIONS
73	Negative Public Information in Mate Choice Copying Helps the Spread of a Novel Trait. American Naturalist, 2014, 184, 658-672.	2.1	15
74	Evolution of linkage and genome expansion in protocells: The origin of chromosomes. PLoS Genetics, 2020, 16, e1009155.	3.5	15
75	The role of genic selection in the establishment of inversion polymorphism in Drosophila subobscura. Genetica, 1986, 69, 35-45.	1.1	14
76	MATING PATTERN AND FITNESS-COMPONENT ANALYSIS ASSOCIATED WITH INVERSION POLYMORPHISM IN A NATURAL POPULATION OF <i>DROSOPHILA BUZZATII</i> . Evolution; International Journal of Organic Evolution, 1994, 48, 767-780.	2.3	12
77	Apparent Directional Selection of Body Size in Drosophila buzzatii: Larval Crowding and Male Mating Success. Evolution; International Journal of Organic Evolution, 1996, 50, 2530.	2.3	12
78	Genotype-isopropanol interaction in theAdh locus ofDrosophila buzzatii. Experientia, 1980, 36, 398-400.	1.2	11
79	APPARENT DIRECTIONAL SELECTION OF BODY SIZE IN <i>DROSOPHILA BUZZATII</i> : LARVAL CROWDING AND MALE MATING SUCCESS. Evolution; International Journal of Organic Evolution, 1996, 50, 2530-2535.	2.3	11
80	Comment on â€~Ecologically relevant measures of tolerance to potentially lethal temperatures'. Journal of Experimental Biology, 2012, 215, 702-703.	1.7	11
81	No evidence for shortâ€ŧerm evolutionary response to a warming environment in <i>Drosophila</i> . Evolution; International Journal of Organic Evolution, 2021, 75, 2816-2829.	2.3	11
82	Phenotypes to remember: Evolutionary developmental memory capacity and robustness. PLoS Computational Biology, 2020, 16, e1008425.	3.2	11
83	Symmetry breaking in interspecific Drosophila hybrids is not due to developmental noise. Evolution; International Journal of Organic Evolution, 2006, 60, 746-61.	2.3	11
84	Resource subdivision and the advantage of genotypic diversity in Drosophila. Heredity, 1997, 78, 302-310.	2.6	10
85	Quantitative genetics of speciation: additive and non-additive genetic differentiation between Drosophila madeirensis and Drosophila subobscura. Genetica, 2007, 131, 167-174.	1.1	9
86	Performance of MAX Test and Degree of Dominance Index in Predicting the Mode of Inheritance. Statistical Applications in Genetics and Molecular Biology, 2012, 11, Article 4.	0.6	9
87	Mate-choice copying: A fitness-enhancing behavior that evolves by indirect selection. Evolution; International Journal of Organic Evolution, 2017, 71, 1456-1464.	2.3	9
88	How phenotypic convergence arises in experimental evolution. Evolution; International Journal of Organic Evolution, 2019, 73, 1839-1849.	2.3	9
89	FREQUENCY-DEPENDENT SELECTION ARISING FROM INAPPROPRIATE FITNESS ESTIMATION. Evolution; International Journal of Organic Evolution, 1984, 38, 696-699.	2.3	8
90	On the contribution of deleterious alleles to fitness variance in natural populations of Drosophila. Genetical Research, 1997, 70, 105-115.	0.9	8

#	Article	IF	CITATIONS
91	COMPETITION AND GENOTYPE-BY-ENVIRONMENT INTERACTION IN NATURAL BREEDING SUBSTRATES OF <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 175-186.	2.3	8
92	Genetic hitchhiking can promote the initial spread of strong altruism. BMC Evolutionary Biology, 2008, 8, 281.	3.2	8
93	Playing evolution in the laboratory: From the first major evolutionary transition to global warming. Europhysics Letters, 2018, 122, 38001.	2.0	8
94	The effect of glucose-6-phosphate isomerase genotype onin vitro specific activity andin vivo flux inMytilus edulis. Biochemical Genetics, 1989, 27, 451-467.	1.7	7
95	Wing trait–inversion associations in <i>Drosophila subobscura</i> can be generalized within continents, but may change through time. Journal of Evolutionary Biology, 2015, 28, 2163-2174.	1.7	7
96	Thermal tolerance in <i>Drosophila</i> : Repercussions for distribution, community coexistence and responses to climate change. Journal of Animal Ecology, 2022, 91, 655-667.	2.8	7
97	Genetic analysis of modifier variability inDrosophila subobscura. Experientia, 1981, 37, 1150-1152.	1.2	6
98	ORIGIN OF INVERSIONS AND WALLACE'S RULE OF TRIADS. Evolution; International Journal of Organic Evolution, 1982, 36, 407-409.	2.3	6
99	Origin of Chromosomes in Response to Mutation Pressure. American Naturalist, 1998, 152, 751-756.	2.1	6
100	Competition and Genotype-by-Environment Interaction in Natural Breeding Substrates of Drosophila. Evolution; International Journal of Organic Evolution, 1999, 53, 175.	2.3	6
101	HETEROZYGOTE DEFICIENCIES UNDER LEVENE'S POPULATION SUBDIVISION STRUCTURE. Evolution; International Journal of Organic Evolution, 1994, 48, 912-920.	2.3	5
102	The effect of glucose-6-phosphate isomerase genotype onin vitro specific activity andin vivo flux inMytilus edulis. Biochemical Genetics, 1989, 27, 451-467.	1.7	4
103	Mating Pattern and Fitness-Component Analysis Associated with Inversion Polymorphism in a Natural Population of Drosophila buzzatii. Evolution; International Journal of Organic Evolution, 1994, 48, 767.	2.3	4
104	Selection on structural allelic variation biases plasticity estimates. Evolution; International Journal of Organic Evolution, 2019, 73, 1057-1062.	2.3	4
105	The estimation of genotypic probabilities in an adult population by the analysis of descendants. Genetical Research, 1992, 59, 131-137.	0.9	3
106	Heterozygote Deficiencies Under Levene's Population Subdivision Structure. Evolution; International Journal of Organic Evolution, 1994, 48, 912.	2.3	3
107	Fitness Landscapes, Error Thresholds, and Cofactors in Aptamer Evolution. , 2006, , 54-92.		3
108	â€~Social heterosis' as a process that maintains genetic variation – a comment. Journal of Evolutionary Biology, 2008, 21, 625-630.	1.7	3

#	Article	IF	CITATIONS
109	Editorial: Coping With Climate Change: A Genomic Perspective on Thermal Adaptation. Frontiers in Genetics, 2020, 11, 619441.	2.3	3
110	Differential response to environmental alcohol among second-chromosome arrangements in experimental populations of Drosophila buzzatii. Genetica, 1987, 75, 219-229.	1.1	2
111	SYMMETRY BREAKING IN INTERSPECIFIC DROSOPHILA HYBRIDS IS NOT DUE TO DEVELOPMENTAL NOISE. Evolution; International Journal of Organic Evolution, 2006, 60, 746.	2.3	2
112	The revival of the Baldwin effect. European Physical Journal B, 2017, 90, 1.	1.5	2
113	Basal hsp70 expression levels do not explain adaptive variation of the warm- and cold-climate O3 + 4â€% and OST gene arrangements of Drosophila subobscura. BMC Evolutionary Biology, 2020, 20, 17.	‰ <u>†</u> ậ€‰7 3.2	2
114	Resource subdivision and the advantage of genotypic diversity in Drosophila. Heredity, 1997, 78, 302-310.	2.6	2
115	Origin of Inversions and Wallace's Rule of Triads. Evolution; International Journal of Organic Evolution, 1982, 36, 407.	2.3	1
116	Selection at sex-linked loci. I. A method of estimating total fitnesses. Heredity, 1983, 50, 147-157.	2.6	1
117	Frequency-Dependent Selection Arising from Inappropriate Fitness Estimation. Evolution; International Journal of Organic Evolution, 1984, 38, 696.	2.3	1
118	FLUCTUATING ASYMMETRY IS NONGENETICALLY RELATED TO MATING SUCCESS IN DROSOPHILA BUZZATII. Evolution; International Journal of Organic Evolution, 2001, 55, 2248.	2.3	1
119	On the Measurement of Total and Sexual Selection: A Reply to Christiansen. Evolution; International Journal of Organic Evolution, 1984, 38, 701.	2.3	0
120	Phenotypes to remember: Evolutionary developmental memory capacity and robustness. , 2020, 16, e1008425.		0
121	Phenotypes to remember: Evolutionary developmental memory capacity and robustness. , 2020, 16, e1008425.		0
122	Phenotypes to remember: Evolutionary developmental memory capacity and robustness. , 2020, 16, e1008425.		0
123	Phenotypes to remember: Evolutionary developmental memory capacity and robustness. , 2020, 16, e1008425.		0

Breeding structure of Drosophila buzzatii in relation to competition in prickly pears (Opuntia) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 142