Paul Wilmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496073/publications.pdf

Version: 2024-02-01

		36303	20358
127	15,332	51	116
papers	citations	h-index	g-index
152	152	152	21628
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 2013, 500, 232-236.	27.8	2,339
2	A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 2016, 167, 1339-1353.e21.	28.9	1,882
3	Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology, 2017, 35, 81-89.	17.5	629
4	Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME Journal, 2016, 10, 2557-2568.	9.8	570
5	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491
6	A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nature Communications, 2016, 7, 11535.	12.8	466
7	Human Gut Microbiome: Function Matters. Trends in Microbiology, 2018, 26, 563-574.	7.7	458
8	The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Movement Disorders, 2018, 33, 88-98.	3.9	428
9	VizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome, 2015, 3, 1.	11.1	352
10	The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 2004, 6, 911-920.	3.8	347
11	Metaproteomics: studying functional gene expression in microbial ecosystems. Trends in Microbiology, 2006, 14, 92-97.	7.7	326
12	Extensive transmission of microbes along the gastrointestinal tract. ELife, 2019, 8, .	6.0	313
13	Characterization of Extracellular Polymeric Substances from Acidophilic Microbial Biofilms. Applied and Environmental Microbiology, 2010, 76, 2916-2922.	3.1	239
14	Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nature Microbiology, 2017, 2, 16180.	13.3	233
15	Systematic Design of 18S rRNA Gene Primers for Determining Eukaryotic Diversity in Microbial Consortia. PLoS ONE, 2014, 9, e95567.	2.5	218
16	Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Frontiers in Microbiology, 2017, 8, 738.	3.5	207
17	Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nature Communications, 2018, 9, 5091.	12.8	190
18	From meta-omics to causality: experimental models for human microbiome research. Microbiome, 2013, 1, 14.	11.1	173

#	Article	IF	CITATIONS
19	Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2383-2390.	7.1	171
20	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	30.7	170
21	The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environmental Microbiology, 2016, 18, 2103-2116.	3.8	169
22	The extracellular RNA complement of <i>Escherichia coli</i> . MicrobiologyOpen, 2015, 4, 252-266.	3.0	162
23	A decade of metaproteomics: Where we stand and what the future holds. Proteomics, 2015, 15, 3409-3417.	2.2	161
24	The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?. PLoS ONE, 2012, 7, e51009.	2.5	160
25	Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME Journal, 2008, 2, 853-864.	9.8	156
26	Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment. PLoS ONE, 2008, 3, e1778.	2.5	145
27	IMP: a pipeline forÂreproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biology, 2016, 17, 260.	8.8	141
28	A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnology for Biofuels, 2018, 11, 196.	6.2	138
29	Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism?. Trends in Microbiology, 2020, 28, 401-423.	7.7	135
30	Parkinson's disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biology, 2020, 18, 62.	3.8	122
31	Ninety-nine <i>de novo</i> assembled genomes from the moose (<i>Alces alces</i>) rumen microbiome provide new insights into microbial plant biomass degradation. ISME Journal, 2017, 11, 2538-2551.	9.8	120
32	Sources and Functions of Extracellular Small RNAs in Human Circulation. Annual Review of Nutrition, 2016, 36, 301-336.	10.1	110
33	Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metabolism, 2020, 31, 920-936.e7.	16.2	109
34	Dark matter in host-microbiome metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta, 2018, 1037, 13-27.	5.4	108
35	The microbiome-gut-brain axis in acute and chronic brain diseases. Current Opinion in Neurobiology, 2020, 61, 1-9.	4.2	105
36	A biomolecular isolation framework for eco-systems biology. ISME Journal, 2013, 7, 110-121.	9.8	97

#	Article	IF	CITATIONS
37	The gut microbial metabolite formate exacerbates colorectal cancer progression. Nature Metabolism, 2022, 4, 458-475.	11.9	97
38	A hundred years of activated sludge: time for a rethink. Frontiers in Microbiology, 2014, 5, 47.	3.5	93
39	The dynamic genetic repertoire of microbial communities. FEMS Microbiology Reviews, 2009, 33, 109-132.	8.6	89
40	Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. Npj Biofilms and Microbiomes, 2015, 1, 15007.	6.4	82
41	PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome, 2021, 9, 49.	11.1	81
42	Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME Journal, 2009, 3, 266-270.	9.8	79
43	Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nature Communications, 2014, 5, 5603.	12.8	75
44	Condensing the omics fog of microbial communities. Trends in Microbiology, 2013, 21, 325-333.	7.7	74
45	Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum ^T . Applied and Environmental Microbiology, 2018, 84, .	3.1	71
46	Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth's biogeochemical cycles. Current Opinion in Microbiology, 2009, 12, 310-317.	5.1	70
47	Lipid-based biofuel production from wastewater. Current Opinion in Biotechnology, 2014, 30, 9-16.	6.6	69
48	Measuring soil sustainability via soil resilience. Science of the Total Environment, 2018, 626, 1484-1493.	8.0	69
49	SARS-CoV-2 transmission risk from asymptomatic carriers: Results from a mass screening programme in Luxembourg. Lancet Regional Health - Europe, The, 2021, 4, 100056.	5.6	68
50	Ecological distribution and population physiology defined by proteomics in a natural microbial community. Molecular Systems Biology, 2010, 6, 374.	7.2	63
51	The RNA Complement of Outer Membrane Vesicles From Salmonella enterica Serovar Typhimurium Under Distinct Culture Conditions. Frontiers in Microbiology, 2018, 9, 2015.	3.5	62
52	Using metabolic networks to resolve ecological properties of microbiomes. Current Opinion in Systems Biology, 2018, 8, 73-80.	2.6	61
53	Integrated InÂVitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells. Cell Reports, 2019, 27, 1621-1632.e9.	6.4	59
54	Deep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition. Biotechnology Reports (Amsterdam, Netherlands), 2019, 22, e00321.	4.4	57

#	Article	IF	Citations
55	Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nature Communications, 2020, $11,5281$.	12.8	57
56	Genetic and metabolic links between the murine microbiome and memory. Microbiome, 2020, 8, 53.	11.1	56
57	Sequential Isolation of Metabolites, RNA, DNA, and Proteins from the Same Unique Sample. Methods in Enzymology, 2013, 531, 219-236.	1.0	54
58	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria <i>Nitrosomonas</i> to the Biocide Free Nitrous Acid. Environmental Science & Environmenta	10.0	52
59	Method Optimization for Fecal Sample Collection and Fecal DNA Extraction. Biopreservation and Biobanking, 2015, 13, 79-93.	1.0	48
60	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	3.7	47
61	Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Communications Biology, 2020, 3, 275.	4.4	47
62	Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics. Nature Microbiology, 2021, 6, 123-135.	13.3	47
63	Alignment-free Visualization of Metagenomic Data by Nonlinear Dimension Reduction. Scientific Reports, 2014, 4, 4516.	3.3	46
64	Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities. Microbial Biotechnology, 2015, 8, 363-368.	4.2	46
65	Small RNA profiling of low biomass samples: identification and removal of contaminants. BMC Biology, 2018, 16, 52.	3.8	46
66	Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Science and Technology, 2006, 54, 217-226.	2.5	44
67	<i>In situ</i> phenotypic heterogeneity among single cells of the filamentous bacterium <i>Candidatus</i> Microthrix parvicella. ISME Journal, 2016, 10, 1274-1279.	9.8	43
68	Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome, 2015, 3, 55.	11.1	41
69	The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes. Microbiome, 2021, 9, 243.	11.1	36
70	Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching. Frontiers in Microbiology, 2018, 9, 3059.	3.5	35
71	Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows. Nature Communications, 2021, 12, 7305.	12.8	34
72	The Gut Microbiota and Hematopoietic Stem Cell Transplantation: Challenges and Potentials. Journal of Innate Immunity, 2019, 11, 405-415.	3.8	33

#	Article	IF	Citations
73	A Semi-Quantitative, Synteny-Based Method to Improve Functional Predictions for Hypothetical and Poorly Annotated Bacterial and Archaeal Genes. PLoS Computational Biology, 2011, 7, e1002230.	3.2	32
74	Sample Preservation and Storage Significantly Impact Taxonomic and Functional Profiles in Metaproteomics Studies of the Human Gut Microbiome. Microorganisms, 2019, 7, 367.	3.6	32
75	Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Microbiome, 2020, 8, 96.	11.1	31
76	Fusobacterium nucleatum Extracellular Vesicles Modulate Gut Epithelial Cell Innate Immunity via FomA and TLR2. Frontiers in Immunology, 2020, 11, 583644.	4.8	29
77	Metabolome-Proteome Differentiation Coupled to Microbial Divergence. MBio, 2010, $1,\ldots$	4.1	28
78	Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface. Engineering, 2017, 3, 60-65.	6.7	28
79	Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME Journal, 2022, 16, 666-675.	9.8	28
80	Genome Sequence of "Candidatus Microthrix parvicella―Bio17-1, a Long-Chain-Fatty-Acid-Accumulating Filamentous Actinobacterium from a Biological Wastewater Treatment Plant. Journal of Bacteriology, 2012, 194, 6670-6671.	2.2	27
81	Integrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation. Translational Research, 2017, 186, 79-94.e1.	5.0	27
82	Persistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Communications, 2021, 1, .	4.2	25
83	Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nature Communications, 2022, 13, 2168.	12.8	25
84	Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Applied and Environmental Microbiology, 2018, 84, .	3.1	23
85	Building an international consortium for tracking coronavirus health status. Nature Medicine, 2020, 26, 1161-1165.	30.7	23
86	ICoVeR $\hat{a}\in$ an interactive visualization tool for verification and refinement of metagenomic bins. BMC Bioinformatics, 2017, 18, 233.	2.6	22
87	Extraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles. Methods in Molecular Biology, 2018, 1737, 213-230.	0.9	22
88	Microbial Community Redundancy and Resilience Underpins High-Rate Anaerobic Treatment of Dairy-Processing Wastewater at Ambient Temperatures. Frontiers in Bioengineering and Biotechnology, 2020, 8, 192.	4.1	22
89	Mantis: flexible and consensus-driven genome annotation. GigaScience, 2021, 10, .	6.4	22
90	Genome Sequencing of SARS-CoV-2 Allows Monitoring of Variants of Concern through Wastewater. Water (Switzerland), 2021, 13, 3018.	2.7	21

#	Article	IF	CITATIONS
91	Expressed protein profile of a Tectomicrobium and other microbial symbionts in the marine sponge Aplysina aerophoba as evidenced by metaproteomics. Scientific Reports, 2018, 8, 11795.	3.3	20
92	The microbiome of cryospheric ecosystems. Nature Communications, 2022, 13, .	12.8	20
93	Correlative microscopy for phylogenetic and ultrastructural characterization of microbial communities. Environmental Microbiology Reports, 2012, 4, 36-41.	2.4	19
94	Patterns and Drivers of Extracellular Enzyme Activity in New Zealand Glacier-Fed Streams. Frontiers in Microbiology, 2020, 11, 591465.	3.5	18
95	SARS-CoV-2 transmission in educational settings during an early summer epidemic wave in Luxembourg, 2020. BMC Infectious Diseases, 2021, 21, 417.	2.9	18
96	Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ, 2020, 8, e9973.	2.0	18
97	Resolving host–microbe interactions in the gut: the promise of in vitro models to complement in vivo research. Current Opinion in Microbiology, 2018, 44, 28-33.	5.1	17
98	Deuterium-exchange metabolomics identifies N-methyl lyso phosphatidylethanolamines as abundant lipids in acidophilic mixed microbial communities. Metabolomics, 2012, 8, 566-578.	3.0	16
99	Evolution of the murine gut resistome following broad-spectrum antibiotic treatment. Nature Communications, 2022, 13, 2296.	12.8	16
100	Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Global Change Biology, 2022, 28, 3846-3859.	9.5	15
101	lgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Frontiers in Immunology, 2020, 11, 594350.	4.8	14
102	Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environmental Sciences: Processes and Impacts, 2019, 21, 1426-1445.	3.5	13
103	Emulating the gut–liver axis: Dissecting the microbiome's effect on drug metabolism using multiorgan-on-chip models. Current Opinion in Endocrine and Metabolic Research, 2021, 18, 94-101.	1.4	12
104	Studying the Parkinson's disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Analytical and Bioanalytical Chemistry, 2022, 414, 7399-7419.	3.7	12
105	In praise of open research measures. Nature, 2013, 498, 170-170.	27.8	11
106	Combinatorial analysis reveals highly coordinated early-stage immune reactions that predict later antiviral immunity in mild COVID-19 patients. Cell Reports Medicine, 2022, 3, 100600.	6.5	10
107	Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations. BMC Bioinformatics, 2020, 21, 23.	2.6	9
108	Identification, Recovery, and Refinement of Hitherto Undescribed Population-Level Genomes from the Human Gastrointestinal Tract. Frontiers in Microbiology, 2016, 7, 884.	3.5	8

#	Article	IF	Citations
109	First draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ. Standards in Genomic Sciences, 2017, 12, 64.	1.5	8
110	Challenges, Strategies, and Perspectives for Reference-Independent Longitudinal Multi-Omic Microbiome Studies. Frontiers in Genetics, 2021, 12, 666244.	2.3	8
111	Systems biology of acidophile biofilms for efficient metal extraction. Scientific Data, 2020, 7, 215.	5.3	7
112	Dichloromethane Degradation Pathway from Unsequenced Hyphomicrobium sp. MC8b Rapidly Explored by Pan-Proteomics. Microorganisms, 2020, 8, 1876.	3.6	6
113	Unification of functional annotation descriptions using text mining. Biological Chemistry, 2021, 402, 983-990.	2.5	6
114	Functional meta-omics provide critical insights into long- and short-read assemblies. Briefings in Bioinformatics, 2021, 22, .	6.5	6
115	Sequential Isolation of DNA, RNA, Protein, and Metabolite Fractions from Murine Organs and Intestinal Contents for Integrated Omics of Host–Microbiota Interactions. Methods in Molecular Biology, 2018, 1841, 279-291.	0.9	5
116	Toward hypothesis-driven, personalized microbiome screening. Cell Reports Methods, 2022, 2, 100139.	2.9	3
117	Systematic characterization of human gut microbiome-secreted molecules by integrated multi-omics. ISME Communications, 2021, 1, 82.	4.2	3
118	Systems Biology of Acidophile Biofilms for Efficient Metal Extraction. Advanced Materials Research, 2015, 1130, 312-315.	0.3	1
119	Generalisation of COVID-19 incidences provides a biased view of the actual epidemiological situation. Lancet Regional Health - Europe, The, 2021, 5, 100116.	5.6	1
120	Mass Screening for SARS-CoV-2 Uncovers Significant Transmission Risk from Asymptomatic Carriers. SSRN Electronic Journal, 0, , .	0.4	1
121	RNA in Circulation: Sources and Functions of Extracellular Exogenous RNA in the Blood., 2014, , 1-9.		1
122	RNA in Circulation: Sources and Functions of Extracellular Exogenous RNA in the Blood. , 2015, , 556-564.		1
123	Three-Dimensional Analysis of Microbial Communities. Microscopy and Microanalysis, 2010, 16, 388-389.	0.4	0
124	Correlative TEM/FISH Imaging of Microbial Communities. Biophysical Journal, 2010, 98, 581a.	0.5	0
125	Microbiome and type 1 diabetes (revision number 14)., 2013,,.		0
126	The sequential isolation of metabolites, RNA, DNA, and proteins from a single, undivided mixed microbial community sample. Protocol Exchange, 0, , .	0.3	0

#	Article	IF	CITATIONS
127	Integrated in Vitro and in Silico Modelling Delineates the Molecular Effects of a Symbiotic Regimen on Colorectal Cancer-Derived Cells. SSRN Electronic Journal, 0, , .	0.4	O