Linfeng Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5495594/publications.pdf Version: 2024-02-01

		159585	149698
131	3,860	30	56
papers	citations	h-index	g-index
131 all docs	131 docs citations	131 times ranked	4114 citing authors

LINEENCLAN

#	Article	lF	CITATIONS
1	Solution-Processed Quantum-Dots Light-Emitting Transistors With Equivalent Efficiency of Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2022, 69, 521-524.	3.0	2
2	Effect of Head Groups in Self-Assembled Monolayer Passivation on Properties of InSnZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2022, 69, 160-165.	3.0	3
3	Hybrid Elastic Organic Crystals that Respond to Aerial Humidity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
4	Organic Singleâ€Crystal Actuators and Waveguides that Operate at Low Temperatures. Advanced Materials, 2022, 34, e2200471.	21.0	34
5	Gate Dielectric Treated by Self-Assembled Monolayers (SAMs) to Enhance the Performance of InSnZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2022, 69, 2398-2403.	3.0	8
6	Packing-Dependent Mechanical Properties of Schiff Base Crystals. Crystal Growth and Design, 2022, 22, 3435-3441.	3.0	15
7	Remote and precise control over morphology and motion of organic crystals by using magnetic field. Nature Communications, 2022, 13, 2322.	12.8	34
8	The Effect of the Charge Transfer Transition of the Tetravalent Terbium on the Photostability of Oxide Thinâ€Film Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	7
9	Polymerâ€Coated Organic Crystals with Solventâ€Resistant Capacity and Optical Waveguiding Function. Angewandte Chemie, 2021, 133, 11383-11387.	2.0	7
10	Polymer oated Organic Crystals with Solventâ€Resistant Capacity and Optical Waveguiding Function. Angewandte Chemie - International Edition, 2021, 60, 11283-11287.	13.8	28
11	Influence of Hydrogen Ions on the Performance of Thin-Film Transistors with Solution-Processed AlOx Gate Dielectrics. Applied Sciences (Switzerland), 2021, 11, 4393.	2.5	2
12	The effect of charge transfer transition on the photostability of lanthanide-doped indium oxide thin-film transistors. Communications Materials, 2021, 2, .	6.9	18
13	Inkjet-Printed Full-Color Matrix Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 41773-41781.	8.0	35
14	Effect of Bandgap Widening on Negative-Bias Illumination Stress Stability of Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2021, 68, 4450-4454.	3.0	5
15	Effect of Sc ₂ O ₃ Passivation Layer on the Electrical Characteristics and Stability of InSnZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2021, 68, 4956-4961.	3.0	10
16	InSnZnO Thin-Film Transistors With Nitrogenous Self-Assembled Multilayers Passivation. IEEE Transactions on Electron Devices, 2021, 68, 5612-5617.	3.0	5
17	Effect of Self-Assembled Monolayers (SAMs) as Surface Passivation on the Flexible a-InSnZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2020, 67, 3157-3162.	3.0	20
18	Self-Assembled Monolayers (SAMs)/Al ₂ O ₃ Double Layer Passivated InSnZnO Thin-Film Transistor. IEEE Access, 2020, 8, 101834-101839.	4.2	8

#	Article	IF	CITATIONS
19	High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. Journal of Materials Chemistry C, 2020, 8, 5541-5546.	5.5	39
20	Highly efficient and stable hybrid quantum-dot light-emitting field-effect transistors. Materials Horizons, 2020, 7, 2439-2449.	12.2	4
21	Inkjet-Printed Top-Gate Thin-Film Transistors Based on InGaSnO Semiconductor Layer with Improved Etching Resistance. Coatings, 2020, 10, 425.	2.6	4
22	Inkjet-Printed Oxide Thin-Film Transistors Based on Nanopore-Free Aqueous-Processed Dielectric for Active-Matrix Quantum-Dot Light-Emitting Diode Displays. ACS Applied Materials & Interfaces, 2019, 11, 28052-28059.	8.0	16
23	Controllably realizing elastic/plastic bending based on a room-temperature phosphorescent waveguiding organic crystal. Chemical Science, 2019, 10, 227-232.	7.4	112
24	Reduction of sixthâ€order radial force by harmonic current control and its application to EPS motors. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2019, 209, 45-56.	0.4	1
25	Ultrasensitive and Highly Stretchable Multifunctional Strain Sensors with Timbreâ€Recognition Ability Based on Vertical Graphene. Advanced Functional Materials, 2019, 29, 1907151.	14.9	59
26	Approaching subthreshold-swing limit for thin-film transistors by using a giant-dielectric-constant gate dielectric. RSC Advances, 2019, 9, 27117-27124.	3.6	8
27	High-Performance Amorphous Zinc–Tin–Oxide Thin-Film Transistors With Low Tin Concentration. IEEE Journal of the Electron Devices Society, 2019, 7, 632-637.	2.1	5
28	Aqueous solution-processed, self-flattening AlOx:Y dielectrics for fully-transparent thin-film transistors. Ceramics International, 2019, 45, 15883-15891.	4.8	5
29	Improving Negative-Bias-Temperature-Stress Stability for Thin-Film Transistors by Doping Mg Into ScInO Semiconductor. IEEE Transactions on Electron Devices, 2019, 66, 2620-2623.	3.0	2
30	Solution-processed metal-oxide thin-film transistors: a review of recent developments. Nanotechnology, 2019, 30, 312001.	2.6	78
31	High-performance CdScInO thin-film transistors and their stability improvement under negative bias (illumination) temperature stress. Journal of Materials Chemistry C, 2019, 7, 13960-13965.	5.5	3
32	Inkjet-Printed Self-Aligned Short-Channel Metal-Oxide Thin-Film Transistors Based on Coffee Stripe Dewetting Method. IEEE Electron Device Letters, 2019, 40, 228-231.	3.9	4
33	Fully Printed Top-Gate Metal–Oxide Thin-Film Transistors Based on Scandium-Zirconium-Oxide Dielectric. IEEE Transactions on Electron Devices, 2019, 66, 445-450.	3.0	20
34	High-Performance and Flexible Neodymium- Doped Oxide Semiconductor Thin-Film Transistors With Copper Alloy Bottom-Gate Electrode. IEEE Electron Device Letters, 2018, 39, 839-842.	3.9	15
35	Design, Properties, and TFT Application of Solutionâ€Processed Inâ€Gaâ€Cdâ€O Thin Films. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800034.	2.4	7
36	Pâ€1.2: Photoluminescence and Electrical Properties study of ITOâ€stabilized ZnO Thinâ€Film Transistors with different annealing temperatures. Digest of Technical Papers SID International Symposium, 2018, 49, 520-523.	0.3	1

#	Article	IF	CITATIONS
37	Effects of annealing temperature on properties of InSnZnO thin film transistors prepared by Co-sputtering. RSC Advances, 2018, 8, 34817-34822.	3.6	39
38	InSnZnO Thin-Film Transistors With Vapor- Phase Self-Assembled Monolayer as Passivation Layer. IEEE Electron Device Letters, 2018, 39, 1680-1683.	3.9	18
39	Pâ€1.10: Solutionâ€processed metal oxide semiconductors fabricated with oxygen radical assisting perchlorate aqueous precursors through a new lowâ€temperature reaction route. Digest of Technical Papers SID International Symposium, 2018, 49, 547-550.	0.3	0
40	Aqueous Solution Induced High-Dielectric-Constant AlO _{<i>x</i>} :Y Films for Thin-Film Transistor Applications. Journal of Nanoscience and Nanotechnology, 2018, 18, 7566-7572.	0.9	5
41	Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages. Polymers, 2018, 10, 52.	4.5	1
42	Solution-processed Ga–Cd–O thin-films with tunable bandgaps and their transistors. Journal Physics D: Applied Physics, 2018, 51, 335101.	2.8	4
43	High-Performance, Solution-Processed Quantum Dot Light-Emitting Field-Effect Transistors with a Scandium-Incorporated Indium Oxide Semiconductor. ACS Nano, 2018, 12, 4624-4629.	14.6	25
44	High-Performance Organic Field-Effect Transistors Fabricated Based on a Novel Ternary π-Conjugated Copolymer. ACS Applied Materials & Interfaces, 2017, 9, 7315-7321.	8.0	27
45	Low temperature, solution-processed ambipolar field-effect transistors based on polymer/self-assembled monolayer modified InOx hybrid structures for balanced hole and electron mobilities exceeding 1Âcm2ÂVâ~'1Âsâ~'1. Organic Electronics, 2017, 43, 162-166.	2.6	7
46	All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Materials & Interfaces, 2017, 9, 8194-8200.	8.0	98
47	A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer. Applied Physics Letters, 2017, 110, .	3.3	11
48	A solution-processed and low threshold voltage p-type small molecule based on indolocarbazole- and benzothiophene-fused rings. Dyes and Pigments, 2017, 144, 32-40.	3.7	12
49	Islandâ€Like AZO/Al ₂ O ₃ Bilayer Channel Structure for Thin Film Transistors. Advanced Materials Interfaces, 2017, 4, 1700063.	3.7	10
50	High Mobility Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor by Aluminum Oxide Passivation Layer. IEEE Electron Device Letters, 2017, 38, 879-882.	3.9	54
51	Low-temperature, high-mobility, solution-processed metal oxide semiconductors fabricated with oxygen radical assisted perchlorate aqueous precursors. Chemical Communications, 2017, 53, 6436-6439.	4.1	7
52	Highly conductive AZO thin films obtained by rationally optimizing substrate temperature and oxygen partial pressure. Molecular Crystals and Liquid Crystals, 2017, 644, 190-196.	0.9	4
53	Solution-processed high-mobility neodymium-substituted indium oxide thin-film transistors formed by facile patterning based on aqueous precursors. Applied Physics Letters, 2017, 110, .	3.3	27
54	Stable ambipolar organic–inorganic heterojunction field-effect transistors and inverters with Cytop interlayer. RSC Advances, 2017, 7, 5966-5969.	3.6	20

#	Article	IF	CITATIONS
55	High-performance thin-film transistors with solution-processed ScInO channel layer based on environmental friendly precursor. Journal Physics D: Applied Physics, 2017, 50, 385108.	2.8	11
56	Direct patterning of silver electrodes with 2.4 μm channel length by piezoelectric inkjet printing. Journal of Colloid and Interface Science, 2017, 487, 68-72.	9.4	30
57	Polystyrenesulfonate Dispersed Dopamine with Unexpected Stable Semiquinone Radical and Electrochemical Behavior: A Potential Alternative to PEDOT:PSS. ACS Sustainable Chemistry and Engineering, 2017, 5, 460-468.	6.7	17
58	A study on the bottom-gate ITO-stabilized ZnO thin-film transistors. , 2017, , .		0
59	Effect of Intrinsic Stress on Structural and Optical Properties of Amorphous Si-Doped SnO2 Thin-Film. Materials, 2017, 10, 24.	2.9	15
60	All-Aluminum Thin Film Transistor Fabrication at Room Temperature. Materials, 2017, 10, 222.	2.9	11
61	Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs. Materials, 2016, 9, 623.	2.9	20
62	<i>Letter</i> : Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. Journal of the Society for Information Display, 2016, 24, 211-215.	2.1	3
63	Highâ€mobility flexible thinâ€film transistors with a lowâ€temperature zirconiumâ€doped indium oxide channel layer. Physica Status Solidi - Rapid Research Letters, 2016, 10, 493-497.	2.4	13
64	High-performance back-channel-etched thin-film transistors with amorphous Si-incorporated SnO2 active layer. Applied Physics Letters, 2016, 108, .	3.3	25
65	A novel nondestructive testing method for amorphous Si–Sn–O films. Journal Physics D: Applied Physics, 2016, 49, 505102.	2.8	18
66	High-mobility flexible thin-film transistors with zirconium-doped indium oxide channel layer. , 2016, , .		0
67	Low-temperature, high-stability, flexible thin-film transistors with a novel ScxIn1â^'xO3semiconductor. Journal Physics D: Applied Physics, 2016, 49, 24LT01.	2.8	9
68	Thin-Film Transistors With Neodymium-Incorporated Indium–Zinc-Oxide Semiconductors. IEEE Transactions on Electron Devices, 2016, 63, 1916-1920.	3.0	12
69	Wide bandgap dithienobenzodithiophene-based π-conjugated polymers consisting of fluorinated benzotriazole and benzothiadiazole for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 4719-4727.	5.5	34
70	Effects of Rare-Earth Element Dopants in High-Mobility InOx-Based Thin-Film Transistors. IEEE Electron Device Letters, 2016, 37, 1139-1142.	3.9	12
71	Low-temperature synthesis and electronic transport of topological insulator SmB ₆ nanowires. CrystEngComm, 2016, 18, 7934-7939.	2.6	18
72	Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 19643-19648.	8.0	54

#	Article	IF	CITATIONS
73	High-Mobility and Good-Stability Thin-Film Transistors With Scandium-Substituted Indium Oxide Semiconductors. IEEE Transactions on Electron Devices, 2016, 63, 4315-4319.	3.0	11
74	Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel. Scientific Reports, 2016, 6, 29055.	3.3	48
75	High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature. Scientific Reports, 2016, 6, 25000.	3.3	16
76	Role of Evaporated Silver Nanoparticles in Organic Field-Effect Transistor: Electrical Effects and Dependence on the Size. Journal of Physical Chemistry C, 2016, 120, 1847-1853.	3.1	8
77	Effects of pyridyl group orientations on the optoelectronic properties of regio-isomeric diketopyrrolopyrrole based π-conjugated polymers. Journal of Materials Chemistry C, 2016, 4, 2470-2479.	5.5	13
78	Facile patterning of amorphous indium oxide thin films based on a gel-like aqueous precursor for low-temperature, high performance thin-film transistors. Journal of Materials Chemistry C, 2016, 4, 2072-2078.	5.5	23
79	High-mobility thin film transistors with neodymium-substituted indium oxide active layer. Applied Physics Letters, 2015, 107, .	3.3	30
80	Solution-processed indium-zinc-oxide thin-film transistors based on anodized aluminum oxide gate insulator modified with zirconium oxide. RSC Advances, 2015, 5, 51440-51445.	3.6	21
81	Efficient single-emitting layer hybrid white organic light-emitting diodes with low efficiency roll-off, stable color and extremely high luminance. Journal of Industrial and Engineering Chemistry, 2015, 30, 85-91.	5.8	20
82	Effects of flanked units on optoelectronic properties of diketopyrrolopyrrole based π-conjugated polymers. Dyes and Pigments, 2015, 123, 64-71.	3.7	17
83	Harnessing charge and exciton distribution towards extremely high performance: the critical role of guests in single-emitting-layer white OLEDs. Materials Horizons, 2015, 2, 536-544.	12.2	48
84	Effects of Nd in Nd _{<italic>x</italic>} In _{1-<italic>x</italic>} O ₃ Semiconductors for Thin-Film Transistors. IEEE Transactions on Electron Devices, 2015, 62, 2226-2230.	3.0	13
85	High mobility flexible polymer thin-film transistors with an octadecyl-phosphonic acid treated electrochemically oxidized alumina gate insulator. Journal of Materials Chemistry C, 2015, 3, 7062-7066.	5.5	20
86	Effects of bridge units on the properties of indolo[3,2-b]carbazole-co-difluorobenzo[d][1,2,3]triazole based l̃€-conjugated copolymers. Organic Electronics, 2015, 23, 17-27.	2.6	19
87	Flexible organic field-effect transistors with high-reliability gate insulators prepared by a room-temperature, electrochemical-oxidation process. RSC Advances, 2015, 5, 15695-15699.	3.6	16
88	InGaZnO Thin-Film Transistors Modified by Self-Assembled Monolayer With Different Alkyl Chain Length. IEEE Electron Device Letters, 2015, 36, 687-689.	3.9	15
89	High-performance hybrid white organic light-emitting diodes employing p-type interlayers. Journal of Industrial and Engineering Chemistry, 2015, 27, 240-244.	5.8	19
90	Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: The key role of concentration in single dopant host–guest systems. Organic Electronics, 2014, 15, 2616-2623.	2.6	32

#	Article	IF	CITATIONS
91	Studies on NdxIn1â^'xO3 semiconducting thin films prepared by rf magnetron sputtering. Applied Physics Letters, 2014, 105, .	3.3	21
92	InGaZnO thin-film transistors with back channel modification by organic self-assembled monolayers. Applied Physics Letters, 2014, 104, .	3.3	41
93	Simplified hybrid white organic light-emitting diodes with efficiency/efficiency roll-off/color rendering index/color-stability trade-off. Physica Status Solidi - Rapid Research Letters, 2014, 8, 719-723.	2.4	14
94	Effects of Solvent Treatment on the Characteristics of InGaZnO Thin-Film Transistors. ECS Journal of Solid State Science and Technology, 2014, 3, Q3081-Q3084.	1.8	8
95	Investigation and optimization of each organic layer: A simple but effective approach towards achieving high-efficiency hybrid white organic light-emitting diodes. Organic Electronics, 2014, 15, 926-936.	2.6	36
96	Low Bandâ€Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Efficient Thickâ€Film Polymer Solar Cells. Advanced Materials, 2014, 26, 2586-2591.	21.0	375
97	Performance improvement of oxide thin-film transistors with a two-step-annealing method. Solid-State Electronics, 2014, 91, 9-12.	1.4	22
98	Very-High Color Rendering Index Hybrid White Organic Light-Emitting Diodes with Double Emitting Nanolayers. Nano-Micro Letters, 2014, 6, 335-339.	27.0	34
99	The effect of spacer in hybrid white organic light emitting diodes. Science Bulletin, 2014, 59, 3090-3097.	1.7	14
100	A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. Journal of Materials Chemistry C, 2014, 2, 1255-1259.	5.5	84
101	Extremely stable-color flexible white organic light-emitting diodes with efficiency exceeding 100 lm W ^{â^'1} . Journal of Materials Chemistry C, 2014, 2, 9836-9841.	5.5	48
102	Simultaneous achievement of low efficiency roll-off and stable color in highly efficient single-emitting-layer phosphorescent white organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 5870-5877.	5.5	23
103	Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness. Journal of Luminescence, 2014, 151, 161-164.	3.1	17
104	Efficient hybrid white organic light-emitting diodes with extremely long lifetime: the effect of n-type interlayer. Scientific Reports, 2014, 4, 7198.	3.3	42
105	Investigation on spacers and structures: A simple but effective approach toward high-performance hybrid white organic light emitting diodes. Synthetic Metals, 2013, 184, 5-9.	3.9	16
106	Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	19
107	Comprehensive Study on the Electron Transport Layer in Blue Flourescent Organic Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2013, 2, R258-R261.	1.8	24
108	Low-Roughness and Easily-Etched Transparent Conducting Oxides with a Stack Structure of ITO and IZO. ECS Journal of Solid State Science and Technology, 2013, 2, R245-R248.	1.8	3

#	Article	IF	CITATIONS
109	Enhancement of bias and illumination stability in thin-film transistors by doping InZnO with wide-band-gap Ta2O5. Applied Physics Letters, 2013, 102, .	3.3	46
110	High-Performance Hybrid White Organic Light-Emitting Diodes Comprising Ultrathin Blue and Orange Emissive Layers. Applied Physics Express, 2013, 6, 122101.	2.4	22
111	Role of Rare Earth Ions in Anodic Gate Dielectrics for Indium-Zinc-Oxide Thin-Film Transistors. Journal of the Electrochemical Society, 2012, 159, H502-H506.	2.9	39
112	Impact of Deposition Temperature of the Silicon Oxide Passivation on the Performance of Indium Zinc Oxide Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 076501.	1.5	9
113	A lowâ€cost lowâ€temperature thinâ€filmâ€transistor backplane based on oxide semiconductor. Journal of the Society for Information Display, 2012, 20, 175-177.	2.1	6
114	Low-Voltage High-Stability Indium–Zinc Oxide Thin-Film Transistor Gated by Anodized Neodymium-Doped Aluminum. IEEE Electron Device Letters, 2012, 33, 827-829.	3.9	54
115	High reliability amorphous oxide semiconductor thinâ€film transistors gated by buried thick aluminum. Physica Status Solidi - Rapid Research Letters, 2012, 6, 403-405.	2.4	9
116	High Efficiency and High <i>V</i> _{oc} Inverted Polymer Solar Cells Based on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer on ITO Cathode. Journal of Physical Chemistry C, 2012, 116, 14188-14198.	3.1	105
117	Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Science China Chemistry, 2012, 55, 755-759.	8.2	14
118	Impact of Deposition Temperature of the Silicon Oxide Passivation on the Performance of Indium Zinc Oxide Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 076501.	1.5	19
119	Influence of source and drain contacts on the properties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxide gate dielectrics. Journal of Applied Physics, 2011, 110, .	2.5	30
120	Pâ€25: A 2â€Inch AMOLED Display Using Inâ€Znâ€Oxide TFTs with Anodized Al ₂ O ₃ G Insulator. Digest of Technical Papers SID International Symposium, 2011, 42, 1185-1187.	ate 0.3	0
121	High-Performance Indium–Gallium–Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide. IEEE Transactions on Electron Devices, 2011, 58, 1452-1455.	3.0	107
122	Tuning on threshold voltage of organic field-effect transistor with a copper oxide layer. Organic Electronics, 2011, 12, 429-434.	2.6	17
123	Gate bias stress stability under light irradiation for indium zinc oxide thin-film transistors based on anodic aluminium oxide gate dielectrics. Journal Physics D: Applied Physics, 2011, 44, 455102.	2.8	18
124	High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique. Applied Physics Letters, 2011, 99, .	3.3	80
125	Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure. Journal of Physical Chemistry C, 2010, 114, 6849-6853.	3.1	198
126	Dipole-Induced Organic Field-Effect Transistor Gated by Conjugated Polyelectrolyte. Japanese Journal of Applied Physics, 2009, 48, 080206.	1.5	5

#	Article	IF	CITATIONS
127	Low-voltage, high-performance n-channel organic thin-film transistors based on tantalum pentoxide insulator modified by polar polymers. Organic Electronics, 2009, 10, 346-351.	2.6	32
128	Synthesis of Novel Conjugated Polyelectrolytes for Organic Fieldâ€Effect Transistors Gate Dielectric Materials. Macromolecular Chemistry and Physics, 2008, 209, 2504-2509.	2.2	10
129	Field effect transistor from individual trigonal Se nanowire. Nanotechnology, 2008, 19, 355201.	2.6	13
130	High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters, 2008, 92, 033307.	3.3	446
131	Hybrid Elastic Organic Crystals that Respond to Aerial Humidity. Angewandte Chemie, 0, , .	2.0	12